Fast Model Debias with Machine Unlearning

单击此处添加副标题

Ruizhe Chen

Motivation

Pre-trained models capture social biases from the large amounts of text they are trained on.

Case1. DNN captures biased correlations in training dataset.

Case2. LLM outputs biased predictions on various sensitive attributes.

Case 3. LLM can learn some stereotypes on race.

Our Method: Fast Model Debiasing (FMD)

- Step1: Identify biases via Generated Counterfactual Sample Pairs
- Step2: Evaluate Biased-effect via Influence Function
- Step3: **Remove** Bias via Machine Unlearning

if bias: train unlear pred: dark pred: blonde pred: blonde y: blonde pred: blonde a: female prob: 0.83 prob: 0.94 prob: 0.65 prob: 0.91 Unlearned Model Model y: dark pred: dark pred: blonde pred: blonde pred: blonde a: male prob: 0.63 prob: 0.89 prob: 0.70 prob: 0.83 Celeb A **Counterfactual Dataset FMD** Pipeline

Common Data

Fast Model Debiasing (FMD) – Bias Identification

Step1: Generate Counterfactual Sample Pairs and Identify bias.

Our fairness definition: Counterfactual fairness

$$B(c_i, \mathcal{A}, \hat{\theta}) = \left| P(\hat{Y} = f_{\hat{\theta}}(X, A)) \mid X = x_i, A = a_i) \right| - P(\hat{Y} = f_{\hat{\theta}}(X, A) \mid X = x_i, A = \bar{a_i}) \right|$$

Fast Model Debiasing (FMD) – Bias Identification

Step1: Generate Counterfactual Sample Pairs and Identify bias.
Counterfactual dataset generation

An toy example: a digit classification task, where color is a biased attribute

Training phase

Fast Model Debiasing (FMD) – Bias Identification

• Step1: Generate Counterfactual Sample Pairs and Identify bias.

Our Constructed dataset in different scenarios:

Age	Workclass	Education	Education-num	Marital-status	Occupation	Race	Sex	Capital-gain	Hours/week	Native-country	Label
65	Private	HS-grad	9	Married	Machine-op-inspct	White	Male	6418	 40	United-States	>50K.
							race		 		
65	Private	HS-grad	9	Married	Machine-op-inspct	Black	Male	6418	40	United-States	>50K.

(c) Adult

$$B(c_i, \mathcal{A}, \hat{\theta}) = \left| P(\hat{Y} = f_{\hat{\theta}}(X, A)) \mid X = x_i, A = a_i) \right| - P(\hat{Y} = f_{\hat{\theta}}(X, A) \mid X = x_i, A = \bar{a_i}) \right|.$$

Fast Model Debiasing (FMD) - Bias Evaluation

• Step2: Biased-Effect Evaluation via Influence Function.

Why does the model make biased predicion?

Influence Function can measure the change of parameters after removing a training sample.

Fast Model Debiasing (FMD) - Bias Evaluation

• Step2: Biased-Effect Evaluation via Influence Function.

Extend influence funtion to bias:

$$I_{up,bias}(z_k, B(\hat{\theta})) = \frac{dB(\hat{\theta}_{\epsilon, z_k})}{d\hat{\theta}_{\epsilon, z_k}} \frac{d\hat{\theta}_{\epsilon, z_k}}{d\epsilon} \Big|_{\epsilon=0} = -\nabla_{\hat{\theta}} B(\hat{\theta}) H_{\hat{\theta}}^{-1} \nabla_{\hat{\theta}} L(z_k, \hat{\theta}),$$

An toy example on digit classfication:

Figure 1: (a) Illustration of the learned pattern on our toy dataset. (b) Visualization of helpful samples (top row) and harmful samples (bottom row).

Fast Model Debiasing (FMD) – Bias Removal

Step3: Bias Removal via Machine Unlearning.

Machine unlearning is a new paradigm which aims to make ML models forget about particular data/knowledge without retraining from scratch.

Fast Model Debiasing (FMD) – Bias Removal

• Step3: Bias Removal via Machine Unlearning.

Unlearn biased data:

$$\theta_{new} = \hat{\theta} + \sum_{k=1}^{K} H_{\hat{\theta}}^{-1} \nabla_{\hat{\theta}} L(z_k, \hat{\theta}),$$

Unlearn biased attribute:

$$\theta_{new} = \hat{\theta} + \sum_{i} H_{\hat{\theta}}^{-1} (\nabla_{\hat{\theta}} L(c_i, \hat{\theta}) - \nabla_{\hat{\theta}} L(\bar{c}_i, \hat{\theta})).$$

(Alternative Efficient Unlearn)

Experimental Results

Results on Colored MNIST

Bias Ratio	Method	Acc.(%) ↑	Bias ↓	Time(s)	# Samp.
	Vanilla	38.59	0.5863	-	-
	LDR	66.76	0.4144	1,261	50 k
0.995	LfF	56.45	0.3675	661	50 k
	Rebias	71.24	0.3428	1,799	50 k
	Ours	71.70	0.3027	59	5 k
	Vanilla	51.34	0.4931	-	-
	LDR	76.48	0.2511	1,330	50 k
0.99	LfF	64.71	0.2366	726	50 k
	Rebias	80.41	0.2302	1,658	50 k
	Ours	80.04	0.2042	48	5 k
	Vanilla	77.63	0.2589	<u>-</u> 2	11-
	LDR	90.42	0.2334	1,180	50 k
0.95	LfF	85.55	0.1264	724	50 k
	Rebias	89.63	0.1205	1,714	50 k
	Ours	89.26	0.1189	56	5 k

Results on Adult

Attr.	Method	Acc.(%) ↑	Bias ↓	Time(s)	# Samp.
	Vanilla	85.40	0.0195	<u>.</u>	12
	LDR	77.69	0.0055	927	26,904
C 1	LfF	73.08	0.0036	525	26,904
Gender	Rebias	76.57	0.0041	1292	26,904
	Ours	81.89	0.0005	2.49	500
	Vanilla	84.57	0.0089	-	-
	LDR	78.32	0.0046	961	26,904
D	LfF	75.16	0.0024	501	26,904
Kace	Rebias	77.89	0.0038	1304	26,904
	Ours	83.80	0.0013	2.54	500

Our method achieved comparable results in both accuracy and bias, with much less debiasing time on a smaller dataset.

Experimental Results on Large Language Models

Evaluation on StereoSet:

Language Modeling Score (LMS) measures the percentage of instances in which a language model prefers the meaningful over meaningless association (the higher the better).

Stereotype Score (SS) measures the percentage of examples in which a model prefers a stereotypical association over an anti-stereotypical association (the closer to 50 the better).

Backbone	Attribute	Method	SS	LMS	Attribute	Method	SS	LMS	Attribute	Method	SS	LMS
BERT	gender	Vanilla	60.28	84.17	race	Vanilla	57.03	84.17	religion	Vanilla	59.7	84.17
		CDA	59.61	83.08		CDA	56.73	83.41		CDA	58.37	83.24
		Dropout	60.66	83.04		Dropout	57.07	83.04		Dropout	59.13	83.04
		INLP	57.25	80.63		INLP	57.29	83.12		INLP	60.31	83.36
		Self-debias	59.34	84.09		Self-debias	54.3	84.24		Self-debias	57.26	84.23
		SentDebias	59.37	84.2		SentDebias	57.78	83.95		SentDebias	58.73	84.26
		Ours	57.77	85.45		Ours	57.24	84.19		Ours	57.85	84.9
	gender	Vanilla	62.65	91.01	race	Vanilla	58.9	91.01	religion	Vanilla	63.26	91.01
		CDA	64.02	90.36		CDA	57.31	90.36		CDA	63.55	90.36
		Dropout	63.35	90.4		Dropout	57.5	90.4		Dropout	64.17	90.4
GPT-2		INLP	60.17	91.62		INLP	58.96	91.06		INLP	63.95	91.17
		Self-debias	60.84	89.07		Self-debias	57.33	89.53		Self-debias	60.45	89.36
		SentDebias	56.05	87.43		SentDebias	56.43	91.38		SentDebias	59.62	90.53
		Ours	60.42	91.01		Ours	60.42	91.01		Ours	58.43	86.13

Debiasing Performance:

Ongoing Work – Interpretable and Efficient LLM Debiasing

Identifying **which module** in LLM contributes to bias:

[1] Meng, Kevin, et al. "Locating and editing factual associations in GPT." Advances in Neural Information Processing Systems 35 (2022) Forcing fairness via Model Editing:

[2] Meng, Kevin, et al. "Mass-editing memory in a transformer." arXiv preprint arXiv:2210.07229 (2022).