

Offline Multi-Agent Reinforcement Learning with Implicit Global-to-Local Value Regularization

Xiangsen Wang¹, Haoran Xu², Yinan Zheng², Xianyuan Zhan²

¹ Beijing Jiaotong University ² Tsinghua University

Challenges for Offline MARL

Offline Challenges + MARL Challenges:

- Extrapolation error : querying OOD actions can cause extrapolation error accumulation
- Scalability issue: the joint action space grows exponentially as the number of agents increases It is difficult to incorporate a proper **global-level** offline regularization on the joint action space.

Existing Solutions:

Value decomposition: decompose global value function into local value functions

$$Q_{tot}(o, a) = \sum_{i} w_i(o) Q_i(o_i, a_i) + b(o)$$
$$w_i \ge 0, \ \forall i = 1 \cdots, n$$

 Local offline regularization: apply policy constraints or value regularizations at the local level

$$egin{split} \pi(s) &= rg\max_{a_i + \xi_{\phi}(s, a_i, \Phi)} Q_{ heta}\left(s, a_i + \xi_{\phi}\left(s, a_i, \Phi
ight)
ight), \quad \left\{a_i \sim G_{\omega}(s)
ight\}_{i=1}^n \ & \ \min_{Q} lpha \mathbb{E}_{\mathbf{s} \sim \mathcal{D}}\left[\log \sum_{\mathbf{a}} \exp(Q(\mathbf{s}, \mathbf{a})) - \mathbb{E}_{\mathbf{a} \sim \hat{\pi}_{eta}(\mathbf{a} \mid \mathbf{s})}[Q(\mathbf{s}, \mathbf{a})]
ight] + rac{1}{2} \mathbb{E}_{\mathbf{s}, \mathbf{a}, \mathbf{s}' \sim \mathcal{D}}\left[\left(Q - \hat{\mathcal{B}}^{\pi_k} \hat{Q}^k
ight)^2
ight] \end{split}$$

Offline MARL Algorithms:

- BCQ-MA
- CQL-MA

. . .

- ICQ (NeurIPS 2020)
- OMAR (ICML 2022)
- OMAC (AAMAS 2022)

2

Problems with Existing Offline MARL Algorithms

□ Naively combine the value decomposition with local-level offline RL

- Offline regularizations of these methods are completely imposed from the local level without considering the global information.
- Simply enforcing local-level regularization cannot guarantee the induced regularization at the global level still remains valid.
- Existing approaches offer no guarantee whether the optimized local policies are jointly optimal under a given value decomposition scheme.

□ Offline Multi-Agent Reinforcement Learning with Implicit Global-to-Local Value

Regularization (OMIGA):

- Multi-agent POMDP with **global** value regularization
- Global-to-Local value and policy decomposition
- Equivalent implicit local value regularizations

Organic combination

Provable decomposition

Dec-POMDP with Global Value Regularization

□ Single-Agent Offline RL:

- Behavior-regularized MDP
- Policy evaluation operator

$$\max_{\pi} \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} \left(r\left(s_{t}, a_{t}\right) - \alpha f\left(\pi\left(a_{t} | s_{t}\right), \mu\left(a_{t} | s_{t}\right)\right)\right)\right]$$

$$\left(\mathcal{T}_{f}^{\pi}\right)Q(s,a) := r(s,a) + \gamma \mathbb{E}_{s'|s,a}\left[V\left(s'\right)\right],$$
$$V(s) = \mathbb{E}_{a \sim \pi}\left[Q(s,a) - \alpha f\left(\pi\left(a_{t}|s_{t}\right), \mu\left(a_{t}|s_{t}\right)\right)\right]$$

Multi-Agent Offline RL:

- MA-POMDP with global value regularization
- Global policy evaluation operator

the KKT conditions of Lagrangian function

• Establishing relationship

among optimal global policy, behavior policy,

Q-value function and state-value function

$$\max_{\pi_{tot}} \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} \left(r\left(o_{t}, a_{t}\right) - \alpha f\left(\pi_{tot}\left(a_{t}|o_{t}\right), \mu_{tot}\left(a_{t}|o_{t}\right)\right) \right)\right]$$

$$\left(\mathcal{T}_{f}^{\pi_{tot}} \right) Q_{tot}(o, a) := r(o, a) + \gamma \mathbb{E}_{o'|o, a} \left[V_{tot} \left(o' \right) \right]$$
$$V_{tot}(o) = \mathbb{E}_{a \sim \pi_{tot}} \left[Q_{tot}(o, a) - \alpha \log \left(\frac{\pi_{tot}(a|o)}{\mu_{tot}(a|o)} \right) \right]$$

$$\pi_{tot}^*(\boldsymbol{a}|\boldsymbol{o}) = \mu_{tot}(\boldsymbol{a}|\boldsymbol{o}) \cdot \exp\left(\frac{Q_{tot}^*(\boldsymbol{o},\boldsymbol{a}) - V_{tot}^*(\boldsymbol{o})}{\alpha}\right)$$

Global-to-Local value and policy decomposition

□ Value decomposition:

$$Q_{tot}(o, a) = \sum_{i} w_i(o) Q_i(o_i, a_i) + b(o)$$
$$V_{tot}(o) = \sum_{i} w_i(o) V_i(o_i) + b(o)$$
$$w_i \ge 0, \ \forall i = 1 \cdots, n$$

D Policy decomposition:

$$\pi_{tot}^{*}(a|o) = \mu_{tot}(a|o) \cdot exp\left(\frac{\sum_{i} w_{i}(o) \left(Q_{i}^{*}(o_{i}, a_{i}) - V_{i}^{*}(o_{i})\right)\right)}{\alpha}\right)$$
$$= \prod_{i=1}^{n} \mu_{i}(a_{i}|o_{i}) \cdot exp\left(\frac{w_{i}(o)}{\alpha} \left(Q_{i}^{*}(o_{i}, a_{i}) - V_{i}^{*}(o_{i})\right)\right)$$
$$= \prod_{i=1}^{n} \pi_{i}^{*}(a_{i}|o_{i})$$

Local formula:

$$\pi_{i}^{*}(a_{i}|o_{i}) = \mu_{i}(a_{i}|o_{i}) \cdot exp\left(\frac{w_{i}(o)}{\alpha}\left(Q_{i}^{*}(o_{i},a_{i}) - V_{i}^{*}(o_{i})\right)\right)$$

- The relationship among optimal **global** policy, behavior policy, Q-value function and state-value function
- The relationship among optimal local policy, behavior policy, Q-value function and state-value function

Equivalent Implicit Local Value Regularizations

□ Self-normalization constraints on local policies:

$$\mathbb{E}_{a_i \sim \mu_i} \left[\exp\left(\frac{1}{\alpha} w_i(\boldsymbol{o}) \left(Q_i^*(o_i, a_i) - V_i^*(o_i)\right)\right) \right] = 1$$

Obtain V by solving the following convex optimization problem:

$$\min_{V_i} \mathbb{E}_{a_i \sim \mu_i} \left[\exp\left(\frac{w_i(\boldsymbol{o})}{\alpha} \left(Q_i(o_i, a_i) - V_i(o_i)\right)\right) + \frac{w_i(\boldsymbol{o})V_i(o_i)}{\alpha} \right]$$

Hyperparameter α is used to control the degree of regularization. The higher α encourages the algorithm to stay near the behavioral distribution. The lower α makes the algorithm more radical and optimistic.

OMIGA Algorithm

Learn the local state-value function:

$$\min_{V_i} \mathbb{E}_{(o_i, a_i) \sim \mathcal{D}} \left[\exp\left(\frac{w_i(\boldsymbol{o})}{\alpha} \left(Q_i(o_i, a_i) - V_i(o_i)\right)\right) + \frac{w_i(\boldsymbol{o})V_i(o_i)}{\alpha} \right]$$

□ Learn the local Q-value function, the weight, and offset:

$$\min_{\substack{Q_i, w_i, b \\ i=1, \cdots, n}} \mathbb{E}_{(\boldsymbol{o}, \boldsymbol{a}, \boldsymbol{o}') \sim \mathcal{D}} \left[\left(r(\boldsymbol{o}, \boldsymbol{a}) + \gamma V_{tot} \left(\boldsymbol{o}' \right) - Q_{tot}(\boldsymbol{o}, \boldsymbol{a}) \right)^2 \right]$$

Learn the local policy:

$$\max_{\pi_i} \mathbb{E}_{(o_i, a_i) \sim \mathcal{D}} \left[\exp\left(\frac{w_i(\boldsymbol{o})}{\alpha} \left(Q_i(o_i, a_i) - V_i(o_i)\right)\right) \cdot \log \pi_i(a_i | o_i) \right]$$

The training process uses **in-sample** learning (without querying OOD action samples).

Algorithm 1 Pseudocode of OMIGA

Require: Offline dataset \mathcal{D} . hyperparameter α .

- 1: Initialize local state-value network V_i , local actionvalue network Q_i and its target network \bar{Q}_i , and policy network π_i for agent i=1, 2, ..., n.
- 2: Initialize the weight function network w and b.
- 3: for $t = 1, \dots, max$ -value-iteration do
- 4: Sample batch transitions (o, a, r, o') from \mathcal{D}
- 5: Update local state-value function $V_i(o_i)$ for each agent *i* via Eq. (13).
- 6: Compute $V_{tot}(o')$, $Q_{tot}(o, a)$ via Eq. (9).
- 7: Update local action-value network $Q_i(o_i, a_i)$, weight function network w(o) and b(o) with objective Eq. (14).
- 8: Update local policy network π_i for each agent *i* via Eq. (15).
- 9: Soft update target network $\bar{Q}_i(o_i, a_i)$ by $Q_i(o_i, a_i)$ for each agent *i*.
- 10: end for

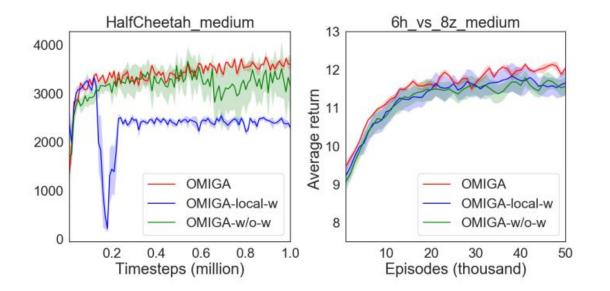
Experimental Results

			Multi-agent MuJo	Со		
Task	Dataset	BCQ-MA	CQL-MA	ICQ	OMAR	OMIGA(ours)
Hopper	expert	77.85±58.04	159.14± 313.83	754.74± 806.28	2.36± 1.46	859.63±709.47
Hopper	medium	44.58±20.62	401.27±199.88	501.79±14.03	21.34±24.90	1189.26± 544.30
Hopper	medium-replay	26.53±24.04	31.37±15.16	195.39±103.61	3.30±3.22	774.18±494.27
Hopper	medium-expert	54.31±23.66	64.82±123.31	355.44±373.86	1.44±0.86	709.00±595.66
Ant	expert	1317.73±286.28	1042.39±2021.65	2050.00±11.86	312.54±297.48	2055.46±1.58
Ant	medium	1059.60±91.22	533.90±1766.42	1412.41±10.93	-1710.04±1588.98	1418.44±5.36
Ant	medium-replay	950.77±48.76	234.62±1618.28	1016.68±53.51	-2014.20±844.68	1105.13±88.87
Ant	medium-expert	1020.89±242.74	800.22±1621.52	1590.18±85.61	-2992.80± 6.95	1720.33±110.63
HalfCheetah	expert	2992.71±629.65	1189.54±1034.49	2955.94±459.19	-206.73±161.12	3383.61±552.67
HalfCheetah	medium	2590.47±1110.35	1011.35±1016.94	2549.27±96.34	-265.68±146.98	3608.13±237.37
HalfCheetah	medium-replay	-333.64±152.06	1998.67±693.92	1922.42±612.87	-235.42±154.89	2504.70±83.47
HalfCheetah	medium-expert	3543.70±780.89	1194.23±1081.06	2833.99±420.32	-253.84± 63.94	2948.46± 518.89
			SMAC			
Task	Dataset	BCQ-MA	CQL-MA	ICQ	OMAR	OMIGA(ours)
5m_vs_6m	good	7.76±0.15	8.08±0.21	7.87±0.30	7.40±0.63	8.25±0.37
5m_vs_6m	medium	7.58±0.10	7.78±0.10	7.77±0.3	7.08±0.51	7.92±0.57
5m_vs_6m	poor	7.61±0.36	7.43±0.10	7.26±0.19	7.27±0.42	7.52±0.21
2c_vs_64zg	good	19.13±0.27	18.48±0.95	18.82±0.17	17.27±0.78	19.15±0.32
2c_vs_64zg	medium	15.58±0.37	12.82±1.61	15.57±0.61	10.20±0.20	16.03±0.19
2c_vs_64zg	poor	12.46±0.18	10.83 ± 0.51	12.56±0.18	11.33±0.50	13.02±0.66
6h_vs_8z	good	12.19±0.23	10.44±0.20	11.81±0.12	9.85±0.28	12.54±0.21
6h_vs_8z	medium	11.77±0.16	11.29±0.29	11.13±0.33	10.36±0.16	12.19±0.22
6h_vs_8z	poor	10.84±0.16	10.81±0.52	10.55 ± 0.10	10.63±0.25	11.31±0.19
corridor	good	15.24±1.21	5.22±0.81	15.54±1.12	6.74±0.69	15.88±0.89
corridor	medium	10.82±0.92	7.04±0.66	11.30±1.57	7.26±0.71	11.66±1.30
corridor	poor	4.47±0.94	4.08±0.60	4.47±0.33	4.28±0.49	5.61±0.35

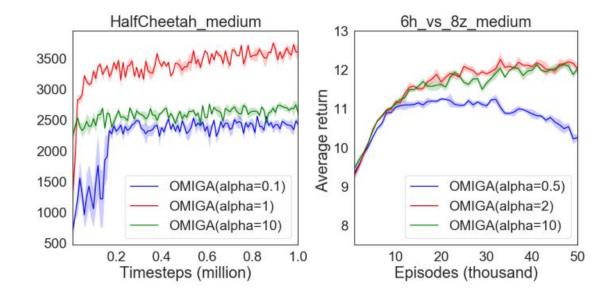
Strong results on Multi-agent MuJoCo and SMAC benchmark datasets

Comparative Evaluation

Analyses on Policy Learning with Global Information



Analyses on the Regularization Hyperparameter



Summary

- We present a new offline multi-agent RL algorithm with implicit global-tolocal value regularization (OMIGA), which provides a principled framework to convert global-level value regularization into equivalent implicit local value regularizations.
- OMIGA bridges multi-agent value decomposition and policy learning with offline regularizations, which can guarantee that the learned local policies are jointly optimal at the global level.

More details are available on https://arxiv.org/abs/2307.11620

Thanks