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Motivation

§ Previous works: Transforms normal feature vectors to 𝑁 0, 1 .

§ Our work:
a. Estimate variances of normal feature vector and transform feature

vectors to appropriate distributions 𝑁 0, 𝜎!" .

b. Like sending normal feature vectors to 𝑁(0, 𝜎!" ), added training to
send abnormal feature vectors to 𝑁 1, 𝜎!" for discriminability.
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Method

§ Idea 1: Split distributions

§ Abnormal image augmentation as CutPaste did.

§ By using segmentation masks of pseudo anomalies, can split normal and abnormal 
feature vectors to parted distributions. 

§ log 𝑝! = 𝑚! log 𝑝!# + (1 − 𝑚!) log 𝑝!$, (𝑚!: 0 for normal and 1 for abnormal)

§ Idea 2: Estimate variances of distributions

§ Statistic prediction network for inferring variances. (VDNet Neurips2019)

§ Assumes the variances of the patches have an inverse-gamma distribution.

§ To find inverse-gamma distribution we predict 𝛼! and 𝛽! and defined a mode value of 
𝐼𝐺(𝛼! , 𝛽!) as a variance of distribution 𝑁(0, 𝜎!").



Framework

A. Synthetic Anomaly Augmentation
B. Feature Extractor
C. Semantic-Aware Normalizing Flow
D. Statistic-Aware Base Distribution



Framework: Synthetic Anomaly Augmentation & Feature Extractor

A. Synthetic Anomaly Augmentation
§ Synthesize abnormal images to facilitate training of NF. (CutPaste CVPR2021)
§ Abnormal images usually differ from normal images only in local regions,

which are semantically or structurally similar to surrounding normal regions.
§ To generate such abnormal data we pasted corrupted patches to normal

images.
B. Feature Extractor
§ Pre-trained CNN to obtain a 3-level feature pyramid.



Framework: Semantic-Aware Normalizing Flow

C. Semantic-Aware Normalizing Flow
§ Feature vectors can follow complex distributions at each scale and spatial location of feature map. 
§ Thus, using a single NF model to map such complex features to a single base distribution can be difficult. 
§ Scale: Employed three independent NF models to handle features across difficult scales as we have 3-level pyramid 

features and position embedding vector conditioning.
§ Spatial: Trained NF models to map feature vectors to latent vectors that follow a spatially varying underlying distribution.



Framework: Statistic-Aware Base Distribution

D. Statistic-Aware Base Distribution
§ Employ a lightweight statistics prediction network ℎ to estimate the variances (𝜎!" ) for the given feature vector 𝑣!.
§ Feature vector will transfer to N(𝜇!, 𝜎!" ).
§ Normal region: 𝜇! = 0, Abnormal region: 𝜇! = 1
§ When samples are non-i.i.d: 𝜎!"~𝐼𝐺(𝛼!, 𝛽!) , 𝐼𝐺 is a inverse Gamma distribution.



Framework: Loss functions



Loss function & Anomaly score
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§ 𝑚!: corresponding binary mask value of augmented abnormal images.
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Experiments: Benchmark

MVTec-AD
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Experiments: Ablations

§ Ablation study on statistics estimation in MVTec and STC datasets.

§ Ablation study on loss functions in MVTec and STC datasets.

§ Ablation study on anomaly augmentation in MVTec and STC datasets.


