

Conservative Offline Policy Adaptation in Multi-Agent Games

Chengjie Wu¹, Pingzhong Tang¹², Jun Yang³, Yujing Hu⁴, Tangjie Lv⁴, Changjie Fan⁴, Chongjie Zhang⁵

¹Institute for Interdisciplinary Information Sciences, Tsinghua University
 ²Turingsense ³Department of Automation, Tsinghua University
 ⁴Fuxi AI Lab, NetEase
 ⁵Department of Computer Science & Engineering, Washington University in St. Louis
 <u>wucj19@mails.tsinghua.edu.cn</u>

Introduction

• Problem Formulation: Offline Policy Adaptation in Multi-Agent Games

Introduction

- Challenges
 - **Distributional shift:** our estimation about the target agent can differ arbitrarily from the real target on outof-distribution (OOD) states
 - <u>Risk free deviation:</u> "conservatism" for addressing distributional shift may not be sufficient in this setting. It
 is possible to benefit from deviation in multi-agent games

Method

Conservative Offline Adaptation (COA)

Definition 4.5. Conservative offline adaptation (COA). Given an unknown policy π_B , and a dataset D of its behavior data, conservative offline adaptation optimizes the worst-case performance against any possible dataset-consistent policy:

$$\max_{\pi} \min_{\mu} J(\pi, \mu), \ s.t. \ \mu \in \mathcal{C}_D.$$
⁽²⁾

The adaptation policy π^* is an optimal risk-free adaptation policy if it is a solution to Objective (2).

Method

Constrained Self-Play (CSP)

$$\max_{\pi} \min_{\mu} J(\pi, \mu) \ s.t. \ \max_{s \in D} D_{\mathrm{KL}}(\pi_B(\cdot|s) \| \mu(\cdot|s)) \le \delta$$

Theorem 4.8. Let π^* be the optimal risk-free offline adaptation policy at the convergence of the optimization of objective 2, and let $\tilde{\pi}$ be the policy at the convergence of objective 5. Then the worst-case adaptation performance of $\tilde{\pi}$ is near-optimal:

$$\min_{\mu \in \mathcal{C}_D} J(\pi^*, \mu) \ge \min_{\mu \in \mathcal{C}_D} J(\tilde{\pi}, \mu) \ge \min_{\mu \in \mathcal{C}_D} J(\pi^*, \mu) - R_M \sqrt{2\delta} \left(1 + \frac{2\gamma\delta}{(1-\gamma)^2} \right).$$
(6)

Experiment

Constrained Self-Play (CSP)

Table 4: Winning rates of offline adaptation policy in 4 scenarios of Google Football: 3vs1 (defender), 3vs1 (attacker), RPS (defender), and Counterattack Easy (defender). For each scenario, we experiment with 5 independent target opponents.

Scenario	Method	1	2	3	4	5
3vs1 defender	CSP(Ours) BC-First Self-Play	$\begin{array}{c} \textbf{0.9} \pm \textbf{0.06} \\ 0.64 \pm 0.04 \\ 0.29 \pm 0.09 \end{array}$	$\begin{array}{c} \textbf{0.6} \pm \textbf{0.12} \\ 0.46 \pm 0.09 \\ 0.34 \pm 0.1 \end{array}$	$\begin{array}{c} \textbf{0.45} \pm \textbf{0.04} \\ 0.2 \pm 0.01 \\ 0.26 \pm 0.16 \end{array}$	$\begin{array}{c} \textbf{0.32} \pm \textbf{0.11} \\ 0.16 \pm 0.04 \\ 0.29 \pm 0.18 \end{array}$	$\begin{array}{c} \textbf{0.76} \pm \textbf{0.16} \\ 0.56 \pm 0.09 \\ 0.3 \pm 0.13 \end{array}$
3vs1 attacker	CSP(Ours) BC-First Self-Play	$\begin{array}{c} \textbf{0.81} \pm \textbf{0.14} \\ \textbf{0.83} \pm \textbf{0.03} \\ 0.75 \pm 0.15 \end{array}$	$\begin{array}{c} \textbf{0.88} \pm \textbf{0.02} \\ 0.74 \pm 0.21 \\ 0.76 \pm 0.08 \end{array}$	$\begin{array}{c} \textbf{0.83} \pm \textbf{0.07} \\ 0.68 \pm 0.07 \\ 0.73 \pm 0.13 \end{array}$	$\begin{array}{c} \textbf{0.84} \pm \textbf{0.05} \\ 0.79 \pm 0.11 \\ 0.7 \pm 0.21 \end{array}$	$\begin{array}{c} \textbf{0.78} \pm \textbf{0.08} \\ 0.71 \pm 0.15 \\ 0.74 \pm 0.08 \end{array}$
RPS defender	CSP(Ours) BC-First Self-Play	$\begin{array}{c} 0.51 \pm 0.33 \\ 0.51 \pm 0.24 \\ \textbf{0.57} \pm \textbf{0.14} \end{array}$	$\begin{array}{c} \textbf{0.71} \pm \textbf{0.07} \\ 0.41 \pm 0.07 \\ 0.36 \pm 0.04 \end{array}$	$\begin{array}{c} \textbf{0.56} \pm \textbf{0.13} \\ 0.34 \pm 0.18 \\ 0.25 \pm 0.04 \end{array}$	$\begin{array}{c} \textbf{0.38} \pm \textbf{0.07} \\ \textbf{0.38} \pm \textbf{0.04} \\ \textbf{0.37} \pm \textbf{0.1} \end{array}$	$\begin{array}{c} \textbf{0.79} \pm \textbf{0.09} \\ 0.71 \pm 0.02 \\ 0.76 \pm 0.03 \end{array}$
Counter- attack defender	CSP(Ours) BC-First Self-Play	$\begin{array}{c} \textbf{0.93} \pm \textbf{0.02} \\ 0.7 \pm 0.17 \\ 0.55 \pm 0.13 \end{array}$	$\begin{array}{c} \textbf{0.88} \pm \textbf{0.04} \\ 0.52 \pm 0.07 \\ 0.41 \pm 0.1 \end{array}$	$\begin{array}{c} \textbf{0.81} \pm \textbf{0.25} \\ 0.53 \pm 0.09 \\ 0.46 \pm 0.09 \end{array}$	$\begin{array}{c} \textbf{0.81} \pm \textbf{0.02} \\ 0.69 \pm 0.14 \\ 0.36 \pm 0.08 \end{array}$	$\begin{array}{c} \textbf{0.75} \pm \textbf{0.06} \\ 0.5 \pm 0.09 \\ 0.36 \pm 0.07 \end{array}$

Figure 3: The average test-train performance gap in four scenarios of Google Football. A negative gap indicates the occurrence of unsafe exploitation.

Conservative Offline Policy Adaptation in Multi-Agent Games

Thank you!