PETAL: Physics Emulation Through Averaged Linearizations for Solving Inverse Problems

Jihui Jin · Etienne Ollivier · Richard Touret Matthew McKinley · Karim Sabra · Justin Romberg

Inverse Problems

- *x* underlying signal of interest (Sound Speed Profile)
- *y* observables (arrival times observed at receivers)
- *F* "Forward" model that maps signal to observables

Physics-based Forward Model

$$F: x \to y$$

 $G_{\theta}: x \to y$

• Train a Neural Net surrogate model

Physics-based Forward Model

$$F: x \to y$$

Train a Neural Net surrogate model

$$G_\theta \colon x \to y$$

• Formulate as optimization problem

$$\hat{x} = \arg\min_{x} \frac{1}{2} |G_{\theta}(x) - y|^2$$

• Solve for iteratively

$$x^{k+1} = x^k - \lambda d^k$$

• Physics-based Forward Model

$$F: x \to y$$

Train a Neural Net surrogate model

$$G_\theta \colon x \to y$$

• Formulate as optimization problem

$$\hat{x} = \arg\min_{x} \frac{1}{2} |G_{\theta}(x) - y|^2$$

• Solve for iteratively

$$x^{k+1} = x^k - \lambda d^k$$

Descent direction

 $d^{k} = J_{G}(x)^{\top}(G_{\theta}(x) - y)$ GPU acceleration (Fast!)

• Physics-based Forward Model

$$F: x \to y$$

• Train a Neural Net surrogate model

$$G_\theta \colon x \to y$$

• Formulate as optimization problem

$$\hat{x} = \arg\min_{x} \frac{1}{2} |G_{\theta}(x) - y|^2$$

• Solve for iteratively

$$x^{k+1} = x^k - \lambda d^k$$

Descent direction

 $d^{k} = J_{G}(x)^{\top}(G_{\theta}(x) - y)$ Autograd/backprop (cheap)

• Physics-based Forward Model

$$F: x \to y$$

• Train a Neural Net surrogate model

$$G_\theta \colon x \to y$$

• Formulate as optimization problem

$$\hat{x} = \arg\min_{x} \frac{1}{2} |G_{\theta}(x) - y|^2$$

• Solve for iteratively

$$x^{k+1} = x^k - \lambda d^k$$

Descent direction

 $d^k = J_G(x)^{\top}(G_{\theta}(x) - y)$ Black box: no physics

PETAL – Embedding Physics

• Ensemble of cheap approximations of physics based forward model

•
$$y = J_F(x_{ref})^T(x - x_{ref}) + y_{ref}$$

 $y = A_{ref}(x - x_{ref}) + y_{ref}$

PETAL

• Compute weights via a learned attention module

PETAL

• Take a weighted average over the set of reference models

Physics-based Forward Model

$$F: x \to y$$

Train **PETAL** surrogate model

$$G_\theta \colon x \to y$$

• Replace F with G_{θ}

 $d^k = J_G(x)^\top (G_\theta(x) - y)$

Physics-based Forward Model

$$F: x \to y$$

Train **PETAL** surrogate model

$$G_\theta \colon x \to y$$

• Replace F with G_{θ}

 $d^k = J_G(x)^{\top}(G_{\theta}(x) - y)$ GPU acceleration (Fast!)

• Physics-based Forward Model

$$F: x \to y$$

Train **PETAL** surrogate model

 $G_\theta \colon x \to y$

• Replace F with G_{θ}

 $d^{k} = J_{G}(x)^{T}(G_{\theta}(x) - y)$ GPU acceleration (Fast!) Autograd/backprop (cheap)

Physics-based Forward Model

$$F: x \to y$$

Train **PETAL** surrogate model

 $G_\theta \colon x \to y$

• Replace F with G_{θ}

 $d^k = J_G(x)^{\top}(G_{\theta}(x) - y)$ GPU acceleration (Fast!) Autograd/backprop (cheap) Embedded Physics via Linearizations

Experimental Set Up

- Data collected from simulations of the Gulf of Mexico
- Forward Model: Direct and surface bounce path between source-receiver pairs
- Data: Sound Speed Profiles
- Observables: Arrival times

Results

	Low Variability		Med Variability		High Variability	
	Avg	Tik	Avg	Tik	Avg	Tik
Tik	0.647		0.773		0.881	
LFM	0.620	0.597	0.584	0.580	0.617	0.630
MLP	0.384	0.378	0.406	0.409	0.424	0.428
PETAL (Ours)	0.365	0.339	0.360	0.346	0.361	0.374

- Tik Classical Inversion with linearized forward model + Tikhonov regularization
- LFM Optimization framework with linearized forward model
- MLP Neural adjoint optimization framework with generic learned surrogate
- PETAL Proposed model in neural adjoint optimization framework

Results

Conclusion

- Introduce the Neural Adjoint method for solving inverse problems
- Introduce a novel architecture that embeds physics into the surrogate
- Demonstrate its efficacy on a ocean acoustic tomography problem

