MMGP: a Mesh Morphing Gaussian Process-based machine learning method for regression of physical problems under nonparametrized geometrical variability

> Fabien Casenave Brian Staber Xavier Roynard

NeurIPS 2023

Introduction

Learning solutions to nonlinear PDEs

- > Learn and predict physical quantities of interest from mesh-based representations
- > Geometric variability and arbitrary mesh connectivities
- > Recent works mostly relying on deep learning (see, e.g., Pfaff et al. 2020)

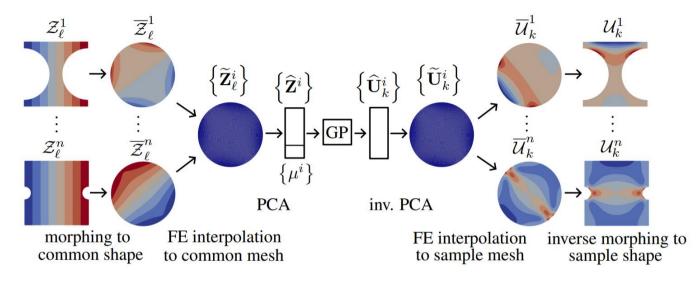
Contributions

- Efficient learning method relying on deterministic preprocessings and classical machine learning tools
- > Comes with predictive uncertainties out off the shelf
- > Trainable on CPU hardware
- > Competitive with recent graph neural networks, *on our experiments*

Assumptions

- > All geometries share a **common topology**
- Meshes contain CAD info (points and surfaces of physical interest)
- > Meshes have « good quality » (used for num. simulation)
- Geometrical variations are controlled, noise free and constrained to avoid extreme distortion (admissible designs)

Mesh morphing Gaussian process



Remarks

- > The morphing algo is chosen a priori
- Shape embedding is morphing + FE interpolation of the vertices coordinate fields seen as continuous fields + dim. red. using PCA
- > The overall red. dim. is highly nonlinear due to morphing

27th NeurIPS 2023 | SafranTech | MMGP | Casenave, Staber & Roynard

- > GPs are in low dim. inputs and outputs
- > GPs enjoy universal approximation theorem
- > GPs enable efficient predictive UQ

Preprocessing steps

Morphing strategies

- > Many algorithmes available in the literature
- > Tutte's barycentric mapping
- Radial Basis Functions

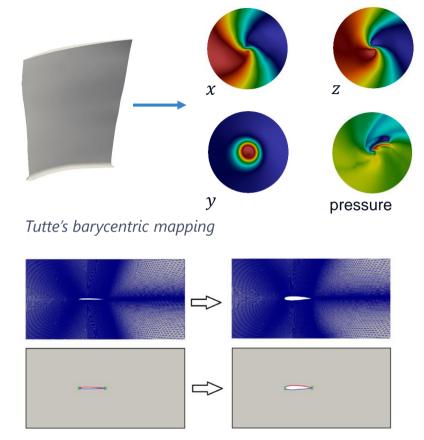
Finite element interpolation

- > Compatible with any element type ($\mathcal{P}_k, \mathcal{Q}_k, \dots$)
- > Efficient C++ implementation

Dimensionality reduction

- > Principal component analysis
- > Snapshot proper orthogonal decomposition

Morphing examples



Radial Basis Functions

Mesh morphing Gaussian process

Training for an output scalar

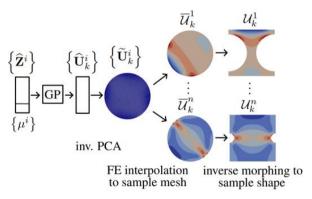
- > Train a 1D Gaussian process
- > Inputs: low-dimensional embeddings of the meshes
- > Outputs: scalar quantity of interest

Training for an output field

- > Train a multi-output Gaussian process
- > Inputs: low-dimensional embeddings of the meshes
- > Outputs: low-dimensional embeddings of the output fields
- > Inverse PCA, finite element interpolation, and inverse morphing to predict the field
- > Uncertainty quantification through Monte Carlo

$$\mathbb{E}[w^{\star}] = \mathbf{k}_{\star}^{T} (\mathbf{K} + \sigma^{2} \mathbf{I})^{-1} \mathbf{w}_{m_{0}},$$
$$\mathbb{V}[w^{\star}] = K_{\star\star} - \mathbf{k}_{\star}^{T} (\mathbf{K} + \sigma^{2} \mathbf{I})^{-1} \mathbf{k}_{\star}$$

Predictive mean and variance of the 1D Gaussian process



Numerical experiments

Datasets

- > Three datasets in computational fluid dynamics and solid mechanics
- > Geometric variabilities
- > Meshes with different number of nodes and adjacency matrices
- > Multiple output scalars and output fields

Datasets	train/test sizes	d_{Ω}	p	d	m	Avg. # nodes
Rotor37	1000/200	3	2	2	4	29,773
Tensile2d	500/200	2	6	6	4	9,425
AirfRANS	800/200	2	2	3	2	179,779
AirfRANS-remeshed	800/200	2	2	3	2	19,527

Table 1: Summary of the considered datasets with d_{Ω} : dimension of the physical problem, p: number of input scalars, d: number of output fields, m: number of output scalars.

Numerical experiments

Setup & results

- Comparative study with graph convolutional neural networks (GCNN) and MeshGraphNets (MGN)
- > Hyperparameter tuning with grid searchs for GNNs
- MMGP is highly competitive both in accuracy and training computational times

Table 3: Training computational times: GCNN and MGN on a Nvidia A100 Tensor Core GPU (neural network training), MMGP on a 48 cores Intel Xeon Gold 6342 CPU (Gaussian process regressors training). Between parenthesis are indicated the numbers of trainings carried-out to optimize hyperparameters (best is **bold**).

Dataset	GCNN	MGN	MMGP	
Rotor37	(200 ×) 24 h	(6 ×) 13 h 14 min	$(10 \times)$ 2 min 49 s	
Tensile2d	$(200 \times)$ 1 h 25 min	$(6 \times) 6 h 50 min$	(10 ×) 1 min 38 s	
AirfRANS	$(200 \times)$ 5 h 15 min	(6 ×) 5 h 00 min	$(10 \times)$ 5 min 47 s	

Table 2: Means and standard deviations (gra	ay) of the relative RMSE and Q^2 scalar regression				
coefficients for all the considered datasets and quantities of interest (QoI) (best is bold).					

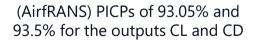
RRMSE			Q^2			
QoI	GCNN	MGN	MMGP	GCNN	MGN	MMGP
Rotor	37 dataset					
m	4.4e-3 (5e-4)	5.4e-3 (7e-5)	5.0e-4 (3e-6)	0.9816 (4e-3)	0.9720 (5e-4)	0.9998 (3e-6)
p	4.4e-3 (5e-4)	5.3e-3 (7e-5)	4.8e-4 (1e-6)	0.9803 (5e-3)	0.9710 (9e-4)	0.9998 (2e-6)
η	3.1e-3 (7e-4)	7.2e-3 (7e-5)	5.0e-4 (3e-6)	0.9145 (4e-2)	0.5551 (2e-3)	0.9979 (1e-6)
γ	2.9e-3 (6e-4)	6.5e-3 (2e-5)	4.6e-4 (2e-7)	0.9068 (4e-2)	0.5257 (2e-3)	0.9977 (2e-6)
P	1.7e-2 (8e-4)	1.7e-2 (2e-3)	7.2e-3 (5e-4)	0.9863 (1e-3)	0.9866 (3e-3)	0.9973 (4e-4)
T	3.9e-3 (1e-4)	1.4e-2 (2e-3)	8.2e-4 (1e-5)	0.9930 (5e-4)	0.9956 (1e-3)	0.9997 (1e-5)
Tensi	le2d dataset					
$p_{\rm max}$	1.6e-0 (7e-1)	2.7e-1 (4e-2)	6.6e-1 (3e-1)	0.4310 (2e-1)	0.6400 (2e-1)	0.9435 (2e-2)
$v_{\rm max}$	4.4e-2 (7e-3)	5.8e-2 (2e-2)	5.0e-3 (3e-5)	0.9245 (3e-2)	0.9830 (1e-2)	0.9999 (2e-5)
σ_{22}^{max}	3.1e-3 (7e-4)	4.5e-3 (1e-3)	1.7e-3 (2e-5)	0.9975 (1e-3)	0.9958 (1e-3)	0.9993 (2e-5)
$\sigma_v^{\tilde{\max}}$	1.2e-1 (4e-2)	2.4e-2 (9e-3)	5.0e-3 (3e-5)	0.9723 (2e-2)	0.9801 (1e-2)	0.9997 (7e-6)
\tilde{u}	4.5e-2 (1e-2)	1.5e-2 (1e-3)	3.4e-3 (4e-5)	0.9623 (2e-2)	0.9270 (1e-2)	0.9997 (6e-6)
v	7.4e-2 (2e-2)	9.7e-2 (7e-3)	5.5e-3 (8e-5)	0.9559 (3e-2)	0.9322 (1e-2)	0.9995 (1e-5)
p	1.3e-1 (7e-2)	1.1e-1 (2e-2)	4.4e-2 (1e-2)	0.5691 (1e-1)	0.2626 (1e-1)	0.7785 (9e-2)
σ_{11}	1.0e-1 (4e-2)	2.8e-2 (3e-3)	3.7e-3 (1e-4)	0.9304 (4e-2)	0.8693 (3e-2)	0.9999 (2e-6)
σ_{12}	4.5e-2 (4e-3)	7.5e-3 (4e-4)	2.4e-3 (2e-5)	0.9617 (5e-3)	0.9868 (1e-3)	0.9999 (1e-6)
σ_{22}	3.3e-2 (3e-3)	2.7e-2 (1e-3)	1.4e-3 (1e-5)	0.9662 (6e-3)	0.9782 (2e-3)	0.9999 (1e-6)
AirfF	ANS dataset					
C_D	6.1e-2 (2e-2)	4.9e-2 (7e-3)	3.3e-2 (2e-3)	0.9596 (2e-2)	0.9743 (1e-2)	0.9831 (2e-3)
$\bar{C_L}$	4.1e-1 (1e-1)	2.4e-1 (8e-2)	8.0e-3 (6e-4)	0.9776 (8e-3)	0.9851 (1e-2)	0.9999 (2e-6)
u^{-}	5.6e-2 (3e-3)	8.3e-2 (2e-3)	1.8e-2 (9e-5)	0.9659 (3e-3)	0.9110 (3e-3)	0.9749 (8e-5)
v	4.2e-2 (2e-3)	1.2e-1 (2e-3)	1.5e-2 (3e-5)	0.9683 (3e-3)	0.7516 (5e-3)	0.9806 (3e-5)
p	8.5e-2 (7e-3)	9.9e-2 (1e-2)	5.1e-2 (2e-5)	0.9602 (8e-3)	0.9390 (2e-2)	0.9934 (1e-5)

Numerical experiments

Example of MMGP predictions (AirfRANS dataset)

Table 5: (AirfRANS) Relative errors (Spearman's rank correlation) for the predicted drag coefficient C_D (ρ_D) and lift coefficient C_L (ρ_D) for the four models of [14, Table 19], as well as GCNN, MGN and MMGP. These scalars of interest are computed as a postprocessing of the predicted fields (best is **bold**).

Model	Relativ	e error	Spearman's correlation		
Widdel	C_D	C_L	ρD	ρ_L	
MLP	6.2e+0 (9e-1)	2.1e-1 (3e-2)	0.25 (9e-2)	0.9932 (2e-3)	
GraphSAGE	7.4e+0 (1e+0)	1.5e-1 (3e-2)	0.19 (7e-2)	0.9964 (7e-4)	
PointNet	1.7e+1 (1e+0)	2.0e-1 (3e-2)	0.07 (6e-2)	0.9919 (2e-3)	
Graph U-Net	1.3e+1 (9e-1)	1.7e-1 (2e-2)	0.09 (5e-2)	0.9949 (1e-3)	
GCNN	3.6e+0 (7e-1)	2.5e-1 (4e-2)	0.002 (2e-1)	0.9773 (4e-3)	
MGN	3.3e+0 (6e-1)	2.6e-1 (8e-2)	0.04 (3e-1)	0.9761 (5e-3)	
MMGP	7.6e-1 (4e-4)	2.8e-2 (4e-5)	0.71 (1e-4)	0.9992 (2e-6)	



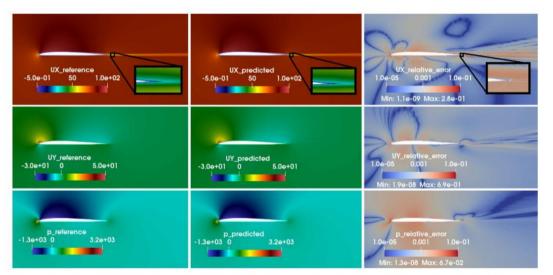


Figure 3: (AirfRANS) Test sample 787, fields of interest u(UX), v(UY) and p: (left) reference, (middle) MMGP prediction, (right) relative error.

Conclusion and outlooks

Unlike deep graph neural networks, MMGP

- > involves many **deterministic steps** (fewer things to learn)
- > involves low dimensional and easy to train models
- > can handle large meshes
- > provides built-in **predictive uncertainties**

Limitations

- > Morphing not in real time (required in inference)
- Does not use physics

Outlooks

> **Optimize morphing** for PCA compression