

When Visual Prompt Tuning Meets Source-Free Domain Adaptive Semantic Segmentation

Xinhong Ma, Yiming Wang, Hao Liu, Tianyu Guo, Yunhe Wang

Huawei Noah's Ark Lab

Mindspore: <u>https://gitee.com/mindspore/models/tree/master/research/cv/uni-uvpt</u> Pytorch: <u>https://github.com/huawei-noah/noah-research/tree/master/uni-uvpt</u>

Definition:

Adapting a pretrained source model to the unlabeled target domain without accessing the private source data.

Limitations:

Previous methods usually finetune the entire network, which suffers from expensive parameter tuning.

How to achieve parameter-efficient adaption?

Prompt tuning may make a difference!

Definition:

Designing a trainable lightweight block as a supplementary input (prompt) for a frozen model, which guides or directs the generalization of representations to achieve desirable performances.

- Limitations of existing visual prompt tuning methods:
 - *a)* The learned visual prompts are unreasonable.
 - b) Lacking methods addressing downstream tasks without sufficient labeled data, i.e., unsupervised visual prompt tuning.

We propose a Universal Unsupervised Visual Prompt Tuning (Uni-UVPT) framework for source-free domain adaptive semantic segmentation.

Universal Unsupervised Visual Prompt Tuning

Prompt Adapter:

- Generating informative visual prompts.
- Improving the generalization of target features.

Adaptive Pseudo-Label Correction

- Learning visual prompts with massive unlabeled target data.
- Enhancing visual prompt's capacity for spatial perturbations.

Prompt Generator:

- Stem (S): a convolutional network for capturing multiscale spatial information.
- Level Embedding (Q): trainable vectors for learning task-shared knowledge.

Prompt Interactor

• Injecting pretrained knowledge into prompts:

 $C_i = C_{i-1} + \operatorname{Attention}(\operatorname{norm}(C_{i-1}), \operatorname{norm}(F_{i-1}^{out}))$

• Generating adapted features with refined prompts:

 $F_i^{in} = F_{i-1}^{out} + \gamma_i \cdot \operatorname{Attention}(\operatorname{norm}(F_{i-1}^{out}), \operatorname{norm}(C_i))$

Adaptive Pseudo-Label Correction

Early-learning phenomenon

- Deep models tend to first fit data with correct pseudo labels during early-learning phase, before eventually memorizing instances with incorrect/noisy pseudo labels.
- The performance deceleration of IoU_m indicates whether overfitting noisy pseudo labels.

Correcting pseudo-labels at suitable moments

• Fitting the training IoU using the least squares:

$$g(t) = at^3 + bt^2 + ct + d$$

• The correction for each category are performed when the condition is satisfied:

$$\frac{\left|g'\left(t_{0}\right)-g'\left(t\right)\right|}{\left|g'\left(t_{0}\right)\right|} > \tau.$$

• The correct pseudo label can be obtained by averaging predictions of multiple rescaled input samples: $1 \frac{m}{1}$

$$\hat{y}_t = \frac{1}{m} \sum_{k=1} \tilde{y}_k$$

Multiscale consistency loss

$$\mathcal{L}_{mc} = \alpha \underbrace{\mathbb{E}_{x_t \sim \mathcal{D}_t} \left[\sum_{i=1}^{N} \frac{1}{m} \sum_{k=1}^{m} \|\tilde{F}_{i,k}^{in} - \hat{F}_i^{in}\|_2^2 \right]}_{\text{feature consistency } \mathcal{L}_{fc}} + \beta \underbrace{\mathbb{E}_{x_t \sim \mathcal{D}_t} \left[-\frac{1}{m} \sum_{k=1}^{m} \text{KL}\left(\tilde{y}_k \parallel \hat{y}_t\right) \right]}_{\text{prediction consistency } \mathcal{L}_{pc}}$$

Table 1: Quantitative evaluations on GTA5 \rightarrow Cityscapes and SYNTHIA \rightarrow Cityscapes tasks. Different segmentation architectures: F (FCN8s VGG-16), D (DeepLabv2 ResNet-101), S (Swin-B), M (MiT-B5). FB: whether the backbone is frozen. Params (M): number of trainable parameters. **Bold**: the best results based on different source pre-trained models. (+x.x): mIoU gains over the corresponding source pre-trained models where the best are in red. <u>Underline</u>: the state-of-the-art results. The full table with per-class IoUs is available in the appendices.

Methods	Arch	FB	Params (M)	$GTA5 \rightarrow Cityscapes$	SYNTHIA \rightarrow Cityscapes	
				mIoU ₁₉ (%)	$mIoU_{16}(\%)$	$mIoU_{13}(\%)$
SFDA 30	F	X	1245	35.8	-	-
GtA [19]	F	×	134.5	45.9	41.3	48.9
URMA [14]	D	X	47.4	45.1	39.6	45.0
SRDA 5	D	×	-	45.8	-	-
SFUDA [46]	D	×	-	49.4	-	51.9
BDT [20]	D	X	43.8	52.6	-	56.7
GtA [19]	D	×	43.8	53.4	52.0	60.1
Standard Single Source	S	X	90.7	50.5	44.6	49.8
CPSL 24	S	1	3.9	51.1 (+0.6)	46.4 (+1.8)	52.3 (+2.5)
VPT [18] + ELR [47]	S	✓	7.0	53.5 (+2.0)	47.7 (+3.1)	53.2 (+3.4)
Ours	S	 Image: A start of the start of	28.6	56.2 (+5.7)	52.6 (+8.0)	59.4 (+9.6)
Standard Single Source	Μ	X	85.2	52.5	48.6	55.0
CPSL 24	Μ	✓	3.7	52.5 (+0.0)	50.5 (+1.9)	57.2 (+2.1)
VPT [18] + ELR [47]	Μ	\checkmark	7.6	54.1 (+1.6)	51.6 (+3.0)	58.0 (+3.0)
Ours	Μ	\checkmark	12.3	54.2 (+1.7)	52.6 (+4.0)	59.3 (+4.3)
Source-GtA [19]	S	X	110.4	52.8	48.8	55.0
CPSL 24	S	\checkmark	3.9	53.5 (+0.7)	49.6 (+0.8)	56.2 (+1.2)
VPT [18] + ELR[47]	S	\checkmark	7.0	55.1 (+2.3)	51.6 (+2.8)	58.2 (+3.2)
GtA [19]	S	\checkmark	23.6	56.1 (+3.3)	52.5 (+3.7)	58.7 (+3.7)
Ours	S	 Image: A start of the start of	28.6	<u>56.9</u> (+4.1)	<u>53.8</u> (+5.0)	<u>60.4</u> (+5.4)
Source-GtA [19]	Μ	X	103.7	53.0	50.0	56.2
CPSL 24	Μ	\checkmark	3.7	53.2 (+0.2)	52.2 (+2.2)	58.7 (+2.5)
VPT [18] + ELR [47]	Μ	\checkmark	7.6	54.4 (+1.4)	53.0 (+3.0)	59.5 (+3.3)
GtA [19]	Μ	\checkmark	22.3	55.2 (+2.2)	53.6 (+3.6)	59.7 (+3.5)
Ours	Μ		12.3	56.1 (+3.1)	<u>53.8</u> (+3.8)	60.1 (+3.9)

Experiments: Ablation Study

Table 2: Ablatic	on study (on the pro	ompt adapter. PG,	Table 3: Analysis on pseudo-label strategies.			
PI and LE resp	ectively	denote p	rompt generator,	Meth	nods	mIoU (%)	
prompt interact	tor and l	evel emb	edding. The per-		irc	56.24	
formance drop is over our complete approach.				ELR	<u>[47]</u>	55.60	
PG		Ы	mIoU (%)	Ours +	offline	55.47	
Stem	LE	•••		Table 4:	Analysis on co	nsistency loss.	
Multiscale Multiscale	×	1	56.24 (Ours) 55.58 10.66	Feature	Prediction	mIoU (%)	
Singlescale	1	1	$55.52_{\pm 0.72}$	✓	1	56.24 (Ours)	
X			$55.50 \downarrow 0.74$	×		54.26	
Multiscale		PI 1	$55.34_{\pm 0.90}$	~	X	56.01	
<u> </u>	×	~	JJ.07 ↓1.17	<u>^</u>	^	55.81	

Table 5: Comparative results of different augmentations on GTA5 \rightarrow Cityscapes and SYNTHIA \rightarrow Cityscapes tasks. Different segmentation architectures: S (Swin-B), M (MiT-B5). FB: whether the backbone is frozen. Params (M): number of trainable parameters. (+x.x): mIoU gains over the corresponding source pre-trained models.

Methods	Arch	FB	Params (M)	$GTA5 \rightarrow Cityscapes$	SYNTHIA \rightarrow Cityscapes
				$mIoU_{19}(\%)$	$mIoU_{16}(\%)$
Ours	S	5	28.6	56.2 (+5.7)	52.6 (+8.0)
Ours-weather	S		28.6	54.7 (+4.2)	52.9 (+8.3)
Ours	M	5	12.3	54.2 (+1.7)	52.6 (+4.0)
Ours-weather	M		12.3	54.1 (+1.6)	53.0 (+4.4)
Ours	S	5	28.6	56.9 (+4.1)	53.8 (+5.0)
Ours-weather	S		28.6	54.1 (+1.6)	53.0 (+4.4)
Ours	M	5	12.3	56.1 (+3.1)	53.8 (+3.8)
Ours-weather	M		12.3	55.2 (+2.2)	54.5 (+4.5)

(1) We first highlight the low-efficiency problem of fine-tuning large-scale backbones in source-free domain adaptive semantic segmentation, and propose a universal unsupervised visual prompt tuning framework for parameter-efficient model adaptation.

(2) A lightweight prompt adapter is introduced to learn reasonable visual prompts and enhance feature generalization in a progressive manner. Cooperatively, a novel adaptive pseudo-label correction strategy is proposed to rectify target pseudo labels at suitable moments and improve the learning capacity of visual prompts.

Thank you!

Any problem, please contact the primary authors:

Xinhong Ma, Yiming Wang, Hao Liu, Tianyu Guo, Yunhe Wang

stefanxinhong@gmail.com