Finding Local Minima Efficiently in Decentralized Optimization

Wenhan Xian (wxian1@umd.edu) Heng Huang* (heng@umd.edu)

Introduction

Demand for big computation power

Distributed learning

2

Decentralized Distributed Learning

Decentralized (serverless) distributed learning is a class of distributed learning that trains models in parallel across multiple workers over a decentralized communication network. Each worker node only communicates with its neighbors.

Second-Order Optimality

- Escaping saddle point and finding local minima are core problems in conventional nonconvex optimization.
- Saddle point is a kind of first-order stationary point that can be reached by many gradient-based optimizers while it is not expected.

PDGT

Algorithm 1: PDGT algorithm

1: Input: $\mathbf{x}^{0}, \nabla f(\mathbf{x}^{0}), \epsilon, \gamma, \rho, \delta_{1}, \delta_{2}$ 2: Set $\mathbf{x}_{i} = \mathbf{x}^{0}$, $\mathbf{y}_{i} = \nabla f(\mathbf{x}^{0})$, $T_{1} = \tilde{\Theta}\left(\frac{f(\mathbf{x}^{0}) - f^{*}}{(1 - \sigma)^{2} \min\{\epsilon^{2}, \rho^{2}\}}\right)$, $T_{2} = \tilde{\Theta}\left(\frac{d \log(1/\gamma \delta_{2})}{\gamma^{3}}\right)$, $\eta_{1} = \tilde{\Theta}\left((1 - \sigma)^{2}\right)$, $\eta_{2} = \tilde{\Theta}\left(\frac{\gamma^{2}}{(1 - \sigma)}\right)$, $\mathcal{R} = \tilde{\Theta}\left(\gamma^{\frac{3}{2}}\right)$, $B = \tilde{\Theta}\left(\gamma^{3}\right)$; 3: Call $(\tilde{\mathbf{x}}) = PDGT$ Phase I $(\mathbf{x}, \mathbf{y}, \eta_{1}, T_{1}, \delta_{1})$; 4: Call $(\tilde{\mathbf{x}}, \hat{\mathbf{y}}, S) = PDGT$ Phase II $(\tilde{\mathbf{x}}, \eta_{2}, T_{2}, \mathcal{R}, B)$; 5: if S = 1 then 6: Return $\hat{\mathbf{x}}$ as a second-order stationary point and stop; 7: else 8: Set $\mathbf{x} = \hat{\mathbf{x}}, \mathbf{y} = \hat{\mathbf{y}}$ and go to Step 3; 9: end if

Algorithm 3: PDGT algorithm: Phase II

1: Input: $\tilde{\mathbf{x}}, \eta_2, T_2, \mathcal{R}, B$ 2: All nodes sample a vector $\xi \sim$ uniform ball of radius \mathcal{R} using the same seed; 3: Set $\mathbf{x}_i^0 = \tilde{\mathbf{x}}_i + \xi$ and run Average Consensus on $\nabla f_i(\mathbf{x}_i^0)$ to set $\mathbf{y}_i^0 = \frac{1}{m} \sum_{i=1}^m \nabla f_i(\mathbf{x}_i^0)$; 4: for $r = 1, \dots, T_2$ do 5: Compute $\mathbf{x}_i^r = \sum_{j \in \mathcal{N}_i} w_{ij} \mathbf{x}_j^{r-1} - \eta_2 \mathbf{y}_i^{r-1}$; $\forall i = 1, \ldots, m$ Compute $\mathbf{y}_i^r = \sum_{j \in \mathcal{N}_i} w_{ij} \mathbf{y}_j^{r-1} + \nabla f_i(\mathbf{x}_i^r) - \nabla f_i(\mathbf{x}_i^{r-1});$ Exchange \mathbf{x}_i^r and \mathbf{y}_i^r with neighboring nodes; $\forall i = 1, \dots, m$ 6: 7: $\forall i = 1, \ldots, m$ 8: end for 9: Run Average Consensus Protocol for iterates \mathbf{x}^{T_2} and $\tilde{\mathbf{x}}$; 10: if $H(\underline{\mathbf{x}}^{T_2}, \mathbf{y}^{T_2}) - H(\underline{\tilde{\mathbf{x}}}, \overline{\tilde{\mathbf{y}}}) > -B$ then 11: Return approximate second-order stationary point $\underline{\tilde{\mathbf{x}}} = [\tilde{\mathbf{x}}_1, \dots, \tilde{\mathbf{x}}_m]$ and set S = 1; 12: else 13: Return $\underline{\mathbf{x}}^{T_2} = [\mathbf{x}_1^{T_2}, \dots, \mathbf{x}_m^{T_2}], \quad \mathbf{y}^{T_2} = [\mathbf{y}_1^{T_2}, \dots, \mathbf{y}_m^{T_2}]$ and set S = 0; 14: end if

 Algorithm 2: PDGT algorithm: Phase I

 1: Input: $\underline{\mathbf{x}}, \underline{\mathbf{y}}, \eta_1, T_1, \delta_1$

 2: Initialization: $\underline{\mathbf{x}}^0 = \underline{\mathbf{x}}, \quad \underline{\mathbf{y}}^0 = \underline{\mathbf{y}};$

 3: for $r = 1, ..., T_1$ do

 4: Compute $\mathbf{x}_i^r = \sum_{j \in \mathcal{N}_i} w_{ij} \mathbf{x}_j^{r-1} - \eta_1 \mathbf{y}_i^{r-1};$

 5: Compute $\mathbf{y}_i^r = \sum_{j \in \mathcal{N}_i} w_{ij} \mathbf{y}_j^{r-1} + \nabla f_i(\mathbf{x}_i^r) - \nabla f_i(\mathbf{x}_i^{r-1});$

 6: Exchange \mathbf{x}_i^r and \mathbf{y}_i^r with neighboring nodes;

 7: end for

 8: for $j = 1: \log(\frac{1}{\delta_2})$ do

 9: Choose index $t_j \sim [0, T_1]$ uniformly at random and run Consensus Protocol on \tilde{t}_j to find first order stationary point $\tilde{\underline{x}}$ with small gradient tracking disagreement;

 10: end for

- Perturbed Decentralized Gradient Tracking (PDGT) consists of two phases. It runs the descent phase and escaping phase alternatively.
- The descent phase aims to find a first-order stationary point using decentralized gradient tracking.
- After drawing perturbations, the escaping phase is used to discriminate if the candidate point is a local minimum.

Second-Order Optimality in Non-Convex Decentralized Optimization via Perturbed Gradient Tracking. NeurIPS 2020.

5

Restrictions of PDGT

- Deterministic gradient oracle.
- Fix number of iterations in the descent phase.
 - Stuck at saddle point for a long time.
 - \circ $\;$ Hard to be extended to stochastic gradient oracle.
- Consensus protocol over the entire network.
 - Compute \bar{x} and $H(\bar{x})$ periodically.

Stochastic?

Adaptive ?

Contributions

- We propose a novel PErturbed DEcentralized STorm ALgorithm (PEDESTAL), which is the first decentralized stochastic gradient-based algorithm to achieve second-order optimality with theoretical guarantees.
- We provide a new analysis framework to support changing phases on each worker node adaptively and independently.
- We prove that our method achieves (ϵ, ϵ_H) second-order stationary point with the complexity of $\tilde{O}(\epsilon^{-3})$, which matches the best results of decentralized algorithms to find first-order optimality or centralized algorithms to find second-order optimality.

PEDESTAL

Algorithm 1 Perturbed Decentralized STORM Algorithm (PEDESTAL) Input: initial value $x_0^{(i)} = x_0, v_{-1}^{(i)} = 0, y_{-1}^{(i)} = 0, esc^{(i)} = -1.$ **Parameter**: $b_0, b_1, \eta, \beta, r, C_v, \overline{C_d}, C_T$. 1: On *i*-th node: 2: for $t = 0, 1, \ldots, T - 1$ do if t = 0 then Compute $v_0^{(i)} = \nabla F_i(x_0, \xi_0^{(i)})$ with $|\xi_0^{(i)}| = b_0$. 4: 5: else Compute $v_t^{(i)} = \nabla F_i(x_t^{(i)}, \xi_t^{(i)}) + (1 - \beta)(v_{t-1}^{(i)} - \nabla F_i(x_{t-1}^{(i)}, \xi_t^{(i)}))$ with $|\xi_t^{(i)}| = b_1$. 6: 7: end if Communicate and update the gradient tracker: $y_t^{(i)} = \sum_{j=1}^n w_{ij} (y_{t-1}^{(j)} + v_t^{(j)} - v_{t-1}^{(j)}).$ 8: if $esc^{(i)} = -1$ and $||y_t^{(i)}|| \le C_v$ then 9: Draw a perturbation $\xi \sim B_0(r)$ and update $z_t^{(i)} = x_t^{(i)} + \xi$. 10: Save $x_t^{(i)}$ as $\tilde{x}^{(i)}$ and set $esc^{(i)} = 0$. 11: else 12: Update $z_t^{(i)} = x_t^{(i)} - \eta y_t^{(i)}$. 13: 14: end if Communicate and update the model parameter: $x_{t+1}^{(i)} = \sum_{i=1}^{n} w_{ii} z_t^{(j)}$. 15: if $esc^{(i)} > 0$ then 16: Reset $esc^{(i)} = -1$ if $||x_{t+1}^{(i)} - \tilde{x}^{(i)}|| > C_d$ else update $esc^{(i)} = esc^{(i)} + 1$. 17: end if 18: 19: end for **Return**: \bar{x}_{t-C_T} if there are at least $\frac{n}{10}$ nodes satisfying $esc^{(i)} \geq C_T$.

- $\circ~$ We adopt variance reduced gradient estimator.
- Parameter esc⁽ⁱ⁾ represents the status on node
 i. It is -1 when the node is in the descent phase.
 Otherwise, it is the number of iterations that has been updated in the escaping phase.
- Each node can switch phase independently. The escaping phase is started according to real-time local gradient tracker. The escaping phase is broken if the moving distance of the model parameter is larger than a threshold C_d .
- The algorithm is terminated if at least 1/10 of total nodes satisfy $esc^{(i)} \ge C_T$.

8

Theorems

Let $\epsilon_H = \epsilon^{\alpha}$. When $\alpha \leq 0.5$, we have the following Theorem 1.

Theorem 1. Assume $\alpha \leq 0.5$ and Assumption 1 to 5 are satisfied. Let $\theta = \min\{\frac{3-5\alpha}{2}, 1\}$. We set $\eta = \Theta(\frac{\epsilon^{\theta}}{L}), \beta = \Theta(\epsilon^{1+\theta}), b_0 = \Theta(\epsilon^{-2}), b_1 = \Theta(\max\{\epsilon^{2-\theta-5\alpha}, 1\}), r = \Theta(\epsilon^{1+\theta}), C_v = \Theta(\epsilon), C_T = \tilde{\Theta}(\epsilon^{-\theta-\alpha})$ and $C_d = \tilde{\Theta}(\epsilon^{1-\alpha})$. Then our PEDESTAL algorithm will achieve $O(\epsilon, \epsilon_H)$ -second-order stationary point with $\tilde{O}(\epsilon^{-3})$ gradient complexity.

The specific constants hidden in $\Theta(\cdot)$ will be shown in Appendix B, where the proof outline and the completed proof of Theorem 1 can also be found. From Theorem 1 we can see our PEDESTAL-S with $b_1 = O(1)$ can achieve $O(\epsilon, \epsilon_H)$ -second-order stationary point with $\tilde{O}(\epsilon^{-3})$ gradient complexity for $\epsilon_H \ge \epsilon^{0.2}$. In the classic setting, our PEDESTAL achieves second-order stationary point with $\tilde{O}(\epsilon^{-3})$ gradient complexity. When $\alpha > 0.5$, *i.e.*, $\epsilon_H < \sqrt{\epsilon}$, we have the following Theorem 2. Since the parameter settings are different and the O(1) batchsize is only available in Theorem 1, we separate these two theorems. The proof of Theorem 2 can be found in Appendix D.

Theorem 2. When $\epsilon_H < \sqrt{\epsilon}$ (i.e., $\alpha > 0.5$), we set $\eta = \tilde{\Theta}(\epsilon^{\theta})$, $\beta = \Theta(\epsilon^{1+\theta})$, $b_0 = \Theta(\epsilon^{-1})$, $b_1 = \tilde{\Theta}(\epsilon^{-\max\{4\alpha-1-\theta,\theta+\alpha\}})$, $r = \Theta(\epsilon^{1+\theta})$, $C_v = \Theta(\epsilon)$, $C_T = \tilde{\Theta}(\epsilon^{-\theta-\alpha})$ and $C_d = \tilde{\Theta}(\epsilon^{\alpha})$ where $\theta = \min\{\frac{3\alpha-1}{2}, 3\alpha-2\}$. Under Assumption 1 to 5, our PEDESTAL algorithm will achieve $O(\epsilon, \epsilon_H)$ -second-order stationary point with $\tilde{O}(\epsilon\epsilon_H^{-8} + \epsilon^4\epsilon_H^{-11})$ gradient complexity.

Experiments

Figure 1: Experimental results of the decentralized matrix sensing task on different network topology loss function value and the x-axis is the number of gradient oracles divided by the number of data N. gradient oracles divided by the size of matrix $N \times l$.

Figure 2: Experimental results of the decentralized matrix factorization task on different network for d = 50 and d = 100. Data is assigned to worker nodes by random distribution. The y-axis is the topology on MovieLens-100k. The y-axis is the loss function value and the x-axis is the number of

Thank You!

