

V-InFoR: A Robust Graph Neural Networks Explainer for Structurally Corrupted Graphs

Senzhang Wang^{*}, Jun Yin^{*}, Chaozhuo Li, Xing Xie, Jianxin Wang Central South University, Changsha, China NeurIPS 2023

CONTENT

BACKGROUND

- GNN has manifested **promising performance** in many graph tasks.
- However, GNN prediction results **lack human-intelligible explanation**.
- Hence, GNN explanation method aims to identify **explanatory subgraph**.

BACKGROUND

- Existing GNN explanation methods introduce **<u>noise-free assumption</u>**.
- <u>Minor</u> corruption and <u>severe</u> corruption.

MODEL FRAMEWORK

• Robust graph representation extractor based on variational inference.

MODEL FRAMEWORK

• Adaptive explanation generator based on graph information bottleneck.

$$\min_{G_S \subset G} \operatorname{GIB}(G, \hat{y}; G_S) = -\operatorname{MI}(\hat{y}, G_S) + \beta \operatorname{MI}(G, G_S)$$

EXPERIMENT

• Graphs with **random noise**.

Table 1: The comparison of V-InfoR and baselines under random structural noise. We use bold font to mark the highest score. The second highest score is marked with underline. The Impro. is defined as ([V-InfoR]-[Best Baseline])/[Best Baseline].

Dataset	Metric	GradCAM	IG	GNNExplainer	PGExplainer	PGM-Explainer	ReFine	V-InfoR	Rank	Impro.
	P_S	0.8725	0.8625	0.8535	0.8510	0.8505	0.8300	0.8820	1	1.09%
BA-3Motifs	P_N	0.2605	0.2795	0.2410	0.2095	0.2235	0.2625	0.3021	1	8.09%
	F_{NS}	0.4012	0.4222	0.3758	0.3362	0.3540	0.3989	0.4610	1	9.19%
	P_S	0.8760	0.8880	0.8916	0.8640	0.8900	0.8900	0.8964	1	0.54%
Mutag	P_N	0.0996	0.1068	0.1080	0.1260	0.1020	0.1260	0.1696	1	34.60%
	F_{NS}	0.1789	0.1907	0.1920	0.2199	0.1830	0.2207	0.2852	1	29.23%
	P_S	0.9230	0.9200	0.8925	0.8390	0.8860	0.9105	0.9386	1	1.69%
Ogbg-molhiv	P_N	0.0680	0.0400	0.0940	0.1265	0.0980	0.1020	0.1470	1	16.21%
	F_{NS}	0.1267	0.0767	0.1701	0.2198	0.1765	0.1834	0.2542	1	15.65%
	P_S	0.4340	0.5820	0.6616	0.6260	0.6192	0.6344	0.6700	1	1.27%
Ogbg-ppa	P_N	0.4720	0.4600	0.3480	0.2856	0.3780	0.4406	0.4930	1	4.45%
	F_{NS}	0.4522	0.5139	0.4561	0.3922	0.4694	<u>0.5200</u>	0.5680	1	9.23%

EXPERIMENT

• Graphs with **<u>adversarial attack</u>**.

Table 2: The comparison of V-InfoR and baselines under GRABNEL attack [18]. We use bold font to mark the highest score. The second highest score is marked with underlines.

Attack budegt	Dataset	Metric	GradCAM	IG	GNNExplainer	PGExplainer	PGM-Explainer	ReFine	V-InfoR	Rank	Impro.
5	BA-3Motifs	$ P_S $	0.6980	0.6925	0.5625	0.6225	0.5950	0.6700	0.7075	1	1.36%
5%		P_N	0.3625	0.4675	0.4200	0.3700	0.3925	0.3925	0.5450	1	16.58%
		F_{NS}	0.4772	0.5582	0.4809	0.4641	0.4730	0.4950	0.6157	1	10.30%
	Mutag	$ P_S $	0.5740	0.6600	0.6140	0.6610	0.5820	0.6340	0.6760	1	2.27%
		P_N	0.4200	0.3875	0.3800	0.4003	0.4060	0.4100	0.4588	1	9.24%
		F_{NS}	0.4851	0.4883	0.4695	0.4986	0.4783	0.4980	0.5466	1	9.63%
10%	BA-3Motifs	$ P_S $	0.8720	0.8495	0.8605	0.9020	0.8125	0.8800	0.9185	1	1.83%
		P_N	0.0800	0.2105	0.2615	0.2815	0.1925	0.2100	0.3332	1	18.37%
		F_{NS}	0.1466	0.3374	0.4011	0.4291	0.3113	0.3391	0.4890	1	13.96%
	Mutag	$ P_S $	0.5848	0.7370	0.6616	0.6524	0.6392	0.6140	0.7424	1	0.73%
		P_N	0.4160	0.3404	0.3284	0.3928	0.3344	0.4040	0.4277	1	2.81%
		F_{NS}	0.4862	0.4657	0.4389	0.4904	0.4391	0.4873	0.5427	1	10.66%

SUMMARY

- Category: Minor corruption and severe corruption.
- A robust GNN explainer for structurally corrupted graphs.
- Robust graph representation extractor based on variational inference.
- Adaptive explanation generator based on graph information bottleneck.

Central South University