Diffusion Probabilistic Models for Structured Node Classification

Hyosoon Jang¹, Seonghyun Park¹, Sangwoo Mo², Sungsoo Ahn¹

¹POSTECH ² University of Michigan

Problem of interest

- Node classification: given a graph G, predict node-wise labels y.
 - It typically considers a partially labeled graph that includes known node labels $y_{\rm L}$ for predicting unknown node labels $y_{\rm U}$.
 - How to incorporate node-wise label dependencies with the known labels?

training graph $(G, \mathbf{y}_{\mathrm{L}})$

target graph (G, \mathbf{y})

How do known labels benefit?

- dependencies with the known labels.

How to incorporate known labels?

- Key observation: incorporating dependencies with the known label on graph is just like inpainting on image!
 - ${\color{black}\bullet}$

[1] Improving Diffusion Models for Inverse Problems using Manifold Constraints, Chung et al., NeurIPS 2022

We investigate diffusion probabilistic models for structured node classification (DPM-SNC)

DPM-SNC framework

- At a high-level, DPM-SNC consists of:
 - diffusion: injects noise into the node labels
 - reverse diffusion: denoises the noisy labels

[1] Improving Diffusion Models for Inverse Problems using Manifold Constraints, Chung et al., NeurIPS 2022

incorporating known labels
via projection [1]

els

Semi-supervised training

- The training of DPM on partially labeled graph is non-trivial.
 - We newly derive a new semi-supervised training algorithm of DPM which alternates two processes:

complete the graph

conditioned on known labels

denoising-based training (trivial)

Theoretical analysis

- We also theoretically analyze the expressive power of DPM-SNC.
 - compare with conventional GNNs based on Weisfeiler-Lehman (WL) algorithms [1]

* describes the most expressive condition

[1] How Powerful are Graph Neural Networks?, Xu et al., ICLR 2019

Experiments

• DPM-SNC outperforms on transductive node classification benchmarks.

Table 2: The transductive node classification performance. N-Acc. and Sub-Acc. denote the nodelevel and subgraph-level accuracy, respectively. **Bold** numbers indicate the best performance among the structured prediction methods using the same GNN.

	Pubmed	Cora	Citeseer	Photo	Computer	
Method	N-Acc. Sub-Acc.	N-Acc. Sub-Acc.	N-Acc. Sub-Acc.	N-Acc. Sub-Acc.	N-Acc. Sub-Acc.	
LP [42] PTA [43]	$\begin{array}{rrrr} 69.1 \pm 0.0 & 45.7 \pm 0.0 \\ 80.1 \pm 0.2 & 55.2 \pm 0.4 \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrr} 46.1 \pm 0.0 & 29.8 \pm 0.0 \\ 71.3 \pm 0.4 & 51.4 \pm 0.7 \end{array}$	$\begin{array}{cccc} 81.0 \pm 2.0 & 37.2 \pm 1.7 \\ 91.1 \pm 1.5 & 51.0 \pm 1.5 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
GCN [3] +LPA [12] +GMNN [7] +G ³ NN [8] +CLGNN [13] +DPM-SNC (ours)	$\begin{array}{cccc} 79.7 \pm 0.3 & 55.8 \pm 0.6 \\ 79.6 \pm 0.6 & 53.5 \pm 0.9 \\ 82.6 \pm 1.0 & 58.1 \pm 1.4 \\ 80.9 \pm 0.7 & 56.9 \pm 1.1 \\ 81.7 \pm 0.5 & 57.8 \pm 0.7 \\ \textbf{83.0} \pm 0.9 & \textbf{59.2} \pm 1.2 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} 70.9{\pm}0.8 & 49.8{\pm}0.6 \\ 71.0{\pm}0.6 & 50.2{\pm}1.0 \\ 72.8{\pm}0.7 & 52.0{\pm}0.8 \\ 73.9{\pm}0.7 & 53.1{\pm}1.0 \\ 72.0{\pm}0.7 & 51.6{\pm}0.9 \\ \textbf{74.4}{\pm}0.5 & \textbf{53.6}{\pm}0.6 \end{array}$	$\begin{array}{ccccc} 91.0 \pm 1.2 & 52.0 \pm 1.0 \\ 91.3 \pm 1.2 & 52.9 \pm 2.0 \\ 91.2 \pm 1.2 & 54.3 \pm 1.4 \\ 90.7 \pm 1.1 & 53.0 \pm 2.0 \\ 91.1 \pm 1.0 & 53.4 \pm 1.8 \\ \textbf{92.2} \pm 0.8 & \textbf{55.3} \pm 2.1 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
GAT [21] +LPA [12] +GMNN [7] +G ³ NN [8] +CLGNN [13] +DPM-SNC (ours)	$\begin{array}{cccc} 79.1 \pm 0.5 & 55.8 \pm 0.5 \\ 78.7 \pm 1.1 & 56.0 \pm 1.2 \\ 79.6 \pm 0.8 & 57.0 \pm 0.7 \\ 77.9 \pm 0.4 & 55.9 \pm 0.5 \\ 80.0 \pm 0.6 & 57.5 \pm 1.2 \\ 81.7 \pm 0.8 & 59.0 \pm 1.1 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} 71.0{\pm}0.8 & 50.8{\pm}1.0 \\ 71.3{\pm}0.9 & 50.1{\pm}0.9 \\ 71.7{\pm}0.9 & 51.4{\pm}0.9 \\ 74.0{\pm}0.8 & 53.7{\pm}0.5 \\ 72.1{\pm}0.8 & 52.1{\pm}0.8 \\ \textbf{74.3{\pm}0.7} & \textbf{54.0{\pm}0.9} \end{array}$	$\begin{array}{cccc} 90.8 \pm 1.0 & 50.8 \pm 1.9 \\ 91.3 \pm 0.8 & 52.7 \pm 2.1 \\ 91.4 \pm 1.0 & 53.1 \pm 1.6 \\ 91.5 \pm 0.9 & 52.6 \pm 2.2 \\ 90.6 \pm 0.8 & 51.9 \pm 1.8 \\ \textbf{92.0} \pm 0.8 & \textbf{54.0} \pm 2.4 \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
GCNII [44] +DPM-SNC (ours)	82.0±0.8 57.2±1.1 83.8±0.7 61.6±0.9	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccc} 72.9{\scriptstyle\pm0.5} & 52.1{\scriptstyle\pm0.7} \\ \textbf{74.1}{\scriptstyle\pm0.5} & \textbf{54.1}{\scriptstyle\pm0.9} \end{array}$	91.2±1.2 53.2±1.5 92.8±1.1 54.2±1.2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

Table 3: The transductive node classification accuracy on heterophilic graphs. **Bold** numbers indicate the best score.

	Empire	Rating
H ₂ GCN [45]	$60.11{\scriptstyle \pm 0.52}$	$36.47{\scriptstyle\pm0.23}$
CPGNN [46]	$63.96{\scriptstyle \pm 0.62}$	$39.79{\scriptstyle \pm 0.77}$
GPR-GNN [47]	$64.85{\scriptstyle\pm0.27}$	$44.88{\scriptstyle \pm 0.34}$
FSGNN [48]	$79.92{\scriptstyle \pm 0.56}$	$52.74{\scriptstyle\pm0.83}$
GloGNN [49]	$59.63{\scriptstyle\pm0.69}$	$36.89{\scriptstyle \pm 0.14}$
FAGCN [50]	$65.22{\scriptstyle \pm 0.56}$	$44.12{\scriptstyle\pm0.30}$
GBK-GNN [51]	$74.57{\scriptstyle\pm0.47}$	$45.98{\scriptstyle \pm 0.71}$
JacobiConv [52]	$71.14{\scriptstyle \pm 0.42}$	$43.55{\scriptstyle \pm 0.48}$
GCN [3]	$73.69{\scriptstyle \pm 0.74}$	$48.70{\scriptstyle \pm 0.63}$
SAGE [4]	$85.74{\scriptstyle \pm 0.67}$	$53.63{\scriptstyle \pm 0.39}$
GAT [21]	$80.87{\scriptstyle\pm 0.30}$	$49.09{\scriptstyle \pm 0.63}$
GAT-sep [24]	$88.75{\scriptstyle\pm 0.41}$	$52.70{\scriptstyle \pm 0.62}$
GT [53]	$86.51{\scriptstyle\pm0.73}$	$51.17{\scriptstyle \pm 0.66}$
GT-sep [24]	$87.32{\scriptstyle \pm 0.39}$	$52.18{\scriptstyle \pm 0.80}$
DPM-SNC (ours)	$89.52{\scriptstyle \pm 0.46}$	54.66±0.39

Experiments

• DPM-SNC outperforms on inductive node classification benchmarks.

Table 4: The inductive node classification performance. N-Acc., G-Acc., and F1 denote the node-level accuracy, graph-level accuracy, and micro-F1 score, respectively. **Bold** numbers indicate the best performance among the structured prediction methods using the same GNN.

	Pubmed		Cora		Citeseer		PPI
Method	N-Acc.	G-Acc.	N-Acc.	G-Acc.	N-Acc.	G-Acc.	F1
GCN [3] +G ³ NN [8] +CLGNN [13] +SPN [9] +DPM-SNC (ours)	$\begin{array}{c} 80.25 \pm 0.42 \\ 80.32 \pm 0.30 \\ 80.22 \pm 0.45 \\ \textbf{80.78} \pm 0.34 \\ 80.58 \pm 0.41 \end{array}$	$\begin{array}{c} 54.58 \pm 0.51 \\ 53.93 \pm 0.71 \\ 53.98 \pm 0.54 \\ 54.91 \pm 0.40 \\ \textbf{55.16} \pm 0.43 \end{array}$	$\begin{array}{c} 83.36 \pm 0.43 \\ 83.60 \pm 0.25 \\ 83.45 \pm 0.34 \\ 83.85 \pm 0.60 \\ \textbf{84.09} \pm 0.27 \end{array}$	$\begin{array}{c} 59.67 \pm 0.51 \\ 59.78 \pm 0.47 \\ 60.24 \pm 0.38 \\ 60.35 \pm 0.57 \\ \textbf{60.88} \pm 0.36 \end{array}$	$\begin{array}{c} 76.37 \pm 0.35 \\ 76.34 \pm 0.37 \\ 75.71 \pm 0.40 \\ 76.25 \pm 0.48 \\ \textbf{77.01} \pm 0.49 \end{array}$	$\begin{array}{c} 49.84 \pm 0.47 \\ 50.76 \pm 0.47 \\ 50.51 \pm 0.38 \\ 51.02 \pm 1.06 \\ \textbf{51.44} \pm 0.56 \end{array}$	$\begin{array}{c} 99.15 \pm 0.03 \\ 99.33 \pm 0.02 \\ 99.22 \pm 0.04 \\ 99.35 \pm 0.02 \\ \end{array}$
GAT [21] +G ³ NN [8] +CLGNN [13] +SPN [9] +DPM-SNC (ours)	$\begin{array}{c} 80.10 \pm 0.45 \\ 79.88 \pm 0.62 \\ 80.23 \pm 0.40 \\ 79.95 \pm 0.34 \\ \textbf{80.26} \pm 0.37 \end{array}$	$\begin{array}{c} 54.38 \pm 0.54 \\ 54.66 \pm 0.29 \\ 54.51 \pm 0.36 \\ \textbf{54.82} \pm 0.33 \\ \textbf{54.26} \pm 0.47 \end{array}$	$\begin{array}{c} 79.71 \pm 1.41 \\ 81.19 \pm 0.45 \\ 81.38 \pm 0.55 \\ 81.61 \pm 0.31 \\ \textbf{81.79} \pm 0.46 \end{array}$	$\begin{array}{c} 56.66 \pm 1.40 \\ 58.68 \pm 0.38 \\ 58.81 \pm 0.61 \\ 59.17 \pm 0.31 \\ \textbf{59.55} \pm 0.49 \end{array}$	$\begin{array}{c} 74.91 \pm 0.22 \\ 75.45 \pm 0.26 \\ 75.45 \pm 0.36 \\ 75.41 \pm 0.35 \\ \textbf{76.46} \pm 0.60 \end{array}$	$\begin{array}{c} 49.87 \pm 0.44 \\ 50.86 \pm 0.46 \\ 50.66 \pm 0.45 \\ 51.04 \pm 0.53 \\ \textbf{52.05} \pm 0.71 \end{array}$	$\begin{array}{c} 99.54 \pm 0.01 \\ 99.56 \pm 0.01 \\ 99.55 \pm 0.01 \\ 99.46 \pm 0.02 \\ \textbf{99.63} \pm 0.01 \end{array}$

Experiments

• DPM-SNC also shows competitive results in graph algorithmic reasoning tasks.

Table 5: Performance on graph algorithmic reasoning tasks. **Bold** numbers indicate the best performance. Same-MSE and Large-MSE indicate the performance on ten, and 15 nodes, respectively.

	Edge copy		Connected components		Shortest path	
Method	Same-MSE	Large-MSE	Same-MSE	Large-MSE	Same-MSE	Large-MSE
Feedforward	0.3016	0.3124	0.1796	0.3460	0.1233	1.4089
Recurrent [54]	0.3015	0.3113	0.1794	0.2766	0.1259	0.1083
Programmatic [55]	0.3053	0.4409	0.2338	3.1381	0.1375	0.1290
Iterative feedforward [56]	0.6163	0.6498	0.4908	1.2064	0.4588	0.7688
IREM [26]	0.0019	0.0019	0.1424	0.2171	0.0274	0.0464
DPM-SNC (ours)	0.0011	0.0038	0.0724	0.1884	0.0138	0.0286

