

MGDD: A Meta Generator for Fast Dataset Distillation

Songhua Liu and Xinchao Wang

National University of Singapore

Contact: songhua.liu@u.nus.edu

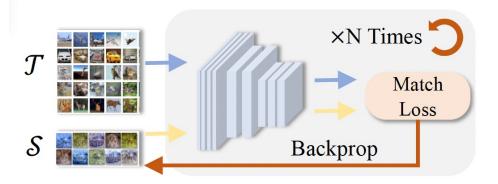
Introduction

P Dataset Distillation (DD):

- Input: An original dataset \mathcal{T}
- Output: A Smaller synthetic dataset S
- Networks with random initialization trained by $\mathcal S$ can perform well on $\mathcal T$

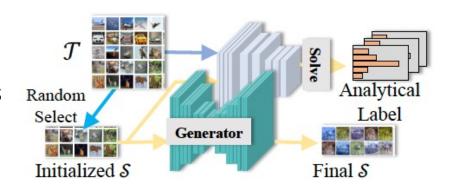
Existing Approaches:

- Iteratively optimize \mathcal{S}
- In each iteration, a new network is initialized randomly
- The distance of $\mathcal S$ and $\mathcal T$ is evaluated using some metric with the network
- The error is back-propagated to $\mathcal S$
- Slow due to optimization in multiple networks



Our Solutions

- Accelerate via Pre-Training:
 - Pre-train a synthetic data generator on a large-scale dataset like ImageNet
 - Initialize $\mathcal S$ using random samples from $\mathcal T$
 - Solve synthetic labels with analytical solutions
 - Adapt the pre-trained generator for a limited number of iterations
 - Generate the final S using the adapted generator taking initial S as input



► First-Order MAML:

 In each iteration, a new target dataset \mathcal{T} is sampled and the meta generator is optimized

```
Initialize \omega randomly;
repeat
     \omega' \leftarrow \text{copy}(\omega);
      Randomly choose a subset of classes \mathcal{C} from \mathcal{Z};
      Sample a batch of images of \mathcal{C} as \mathcal{T};
     for 1 < i < T do
           \mathcal{L} = \texttt{GetTrainingLoss}(\mathcal{T});
                                                                                                  ▶ Meta-Training
           Back propagation and update \omega': \omega' \leftarrow \omega' - \alpha \nabla_{\omega'} \mathcal{L};
      end for
      \mathcal{L} = \texttt{GetTrainingLoss}(\mathcal{T});
                                                                                                   ▶ Meta-Testing
      Back propagation and update \omega: \omega \leftarrow \omega - \beta \nabla_{\omega} \mathcal{L};
until convergence
procedure GETTRAININGLOSS(\mathcal{T})
     Initialize X_s with some random real images from \mathcal{T};
     Obtain Y_s^* with the analytical solution in Eq. 3;
     Forward propagation with X_s^* \leftarrow g_{\omega'}(X_s);
     Randomly sample \theta^* and compute the loss \mathcal{L}((X_s^*, Y_s^*); \theta^*) in Eq. 1;
     return \mathcal{L}((X_s^*, Y_s^*); \theta^*)
end procedure
\mathcal{L}(\mathcal{S}; \theta^*) = \|f_{\theta^*}(X_t)W_s^{\theta^*} - Y_t\|_2^2 = \|f_{\theta^*}(X_t)f_{\theta^*}(X_s)^{\top}(f_{\theta^*}(X_s)f_{\theta^*}(X_s)^{\top})^{-1}Y_s - Y_t\|_2^2.
```


Analytical Labels

• Get analytical labels in a random but fixed network f_{θ} :

$$Y_s^* = f_{\theta}(X_s) W_t^{\theta} = f_{\theta}(X_s) f_{\theta}(X_t)^{\top} (f_{\theta}(X_t) f_{\theta}(X_t)^{\top})^{-1} Y_t.$$

• The error in f_{θ^*} is upper-bounded by that in f_{θ} :

$$\mathcal{L}((X_{s}, Y_{s}^{*}); \theta) = \|f_{\theta}(X_{t})W_{s}^{\theta} - Y_{t}\|_{2}^{2} = \|f_{\theta}(X_{t})f_{\theta}(X_{s})^{\top}(f_{\theta}(X_{s})f_{\theta}(X_{s})^{\top})^{-1}Y_{s}^{*} - Y_{t}\|_{2}^{2} = \epsilon.$$

$$\mathcal{L}((g_{\omega}(X_{s}), Y_{s}^{*}); \theta^{*}) = \|f_{\theta^{*}}(X_{t})W_{s}^{\theta^{*}} - Y_{t}\|_{2}^{2}$$

$$= \|f_{\theta^{*}}(X_{t})f_{\theta^{*}}(g_{\omega}(X_{s}))^{\top}(f_{\theta^{*}}(g_{\omega}(X_{s}))f_{\theta^{*}}(g_{\omega}(X_{s}))^{\top})^{-1}Y_{s}^{*} - Y_{t}\|_{2}^{2}$$

$$\leq \|f_{\theta^{*}}(X_{t})W_{s}^{\theta^{*}} - f_{\theta}(X_{t})W_{s}^{\theta}\|_{2}^{2} + \|f_{\theta}(X_{t})W_{s}^{\theta} - Y_{t}\|_{2}^{2}$$

$$= \|f_{\theta^{*}}(X_{t})W_{s}^{\theta^{*}} - f_{\theta}(X_{t})W_{s}^{\theta}\|_{2}^{2} + \epsilon,$$

Adaptation Stage

Input: (X_t, Y_t) : A Target Dataset; T: Number of Adaptation Steps; α : Learning Rate of Generator; θ : Parameter of a Random Neural Network; ω : Parameter of a Meta Generator; \mathcal{I} : A Set of Randomly Initialized Synthetic Samples.

Output: ω' : Parameter of a Target-Specific Generator.

```
1: W_t^{\theta} = f_{\theta}(X_t)^{\top} (f_{\theta}(X_t) f_{\theta}(X_t)^{\top})^{-1} Y_t;
```

2: **for** Each X_s in \mathcal{I} **do**

3:
$$Y_s^* = f_\theta(X_s)W_t^\theta$$
; $\triangleright \text{Eq. 3}$

4: end for

5: Initialize generator parameters ω' with ω ;

6: **for** $1 \le i \le T$ **do**

Sample a batch of real data (X_t^i, Y_t^i) of from (X_t, Y_t) ;

Sample a initialized synthetic data (X_s, Y_s^*) from \mathcal{I} ;

 $X_s^* = g_{\omega'}(X_s);$

Sample neural parameters θ^* from a random distribution; 10:

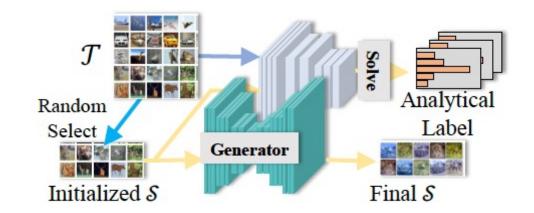
11:
$$\mathcal{L} = \|f_{\theta^*}(X_t)f_{\theta^*}(X_s^*)^{\top} (f_{\theta^*}(X_s^*)f_{\theta^*}(X_s^*)^{\top})^{-1}Y_s^* - Y_t\|_2^2; \qquad \qquad \triangleright \text{Eq. 1}$$
12: Update ω' via $\omega' \leftarrow \omega' - \alpha \nabla_{\omega'} \mathcal{L}; \qquad \qquad \triangleright \text{Back propagation}$

Update ω' via $\omega' \leftarrow \omega' - \alpha \nabla_{\omega'} \mathcal{L}$:

13: end for

Deployment Stage

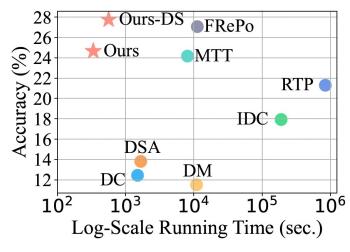
- Initialize ${\mathcal S}$ using random samples from ${\mathcal T}$
- Solve synthetic labels with analytical solutions
- Generate the final \mathcal{S} using the adapted generator taking initial \mathcal{S} as input



Experiments

• Comparisons under the Same Number of Training/Adaptation Steps

Dataset	IPC	DC [60]	DSA [58]	IDC [20]	MTT [2]	DM [59]	FRePo [61]	Ours
MNIST	1	88.7±0.5	87.7±0.6	76.1 ± 0.1	73.1 ± 0.8	87.8 ± 0.7	64.8 ± 0.9	87.8±0.2
	10	96.2 ± 0.2	96.7 ± 0.1	95.1 ± 0.1	92.8 ± 0.2	96.2 ± 0.1	96.3 ± 0.1	97.2 ± 0.1
	50	95.7 ± 0.2	98.3±0.1	98.4 ± 0.1	96.6±0.1	98.0 ± 0.1	98.5±0.1	98.6±0.1
FashionMNIST	1	70.3 ± 0.7	70.3 ± 0.7	64.4 ± 0.4	70.5 ± 1.2	71.1 ± 0.3	61.5 ± 0.3	71.9 ± 0.4
	10	79.8 ± 0.2	79.0 ± 0.3	82.9 ± 0.2	80.1 ± 0.5	83.0 ± 0.1	81.2 ± 0.2	83.4 ± 0.2
	50	78.5 ± 0.2	86.9 ± 0.1	87.0 ± 0.1	86.2 ± 0.1	86.8 ± 0.2	85.9 ± 0.1	87.2±0.1
CIFAR10	1	28.2 ± 0.7	28.1 ± 0.7	25.3 ± 1.0	36.8 ± 0.5	26.8 ± 0.8	27.2 ± 0.5	42.6 ± 0.3
	10	39.7 ± 0.5	48.7 ± 0.3	49.5 ± 0.3	50.8 ± 0.5	48.8 ± 0.2	49.4 ± 0.3	58.9 ± 0.4
	50	39.1 ± 1.0	56.0 ± 0.4	61.7 ± 0.2	56.5 ± 0.5	57.7 ± 0.3	61.8 ± 0.2	66.8±0.2
CIFAR100	1	12.4 ± 0.2	13.8 ± 0.2	15.4 ± 0.2	13.2 ± 0.6	11.9 ± 0.2	10.1 ± 0.2	20.8±0.2
	10	21.1 ± 0.2	31.3 ± 0.4	28.9 ± 0.3	30.2 ± 0.4	30.0 ± 0.4	26.6 ± 0.4	32.2 ± 0.3

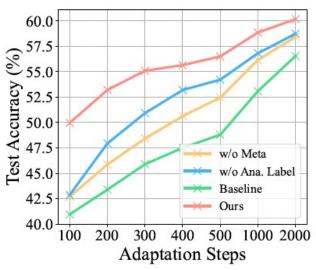


Performance on CIFAR100 1 **IPC**

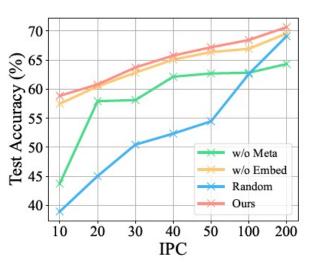
50 IPC before Generator

50 IPC after Generator

Qualitative Results



Adaptation Steps



Performance on Different Performance on Different IPCs (Only 10 and 50 IPCs are seen)

Thanks! Q & A MGDD: A Meta Generator for Fast Dataset Distillation

Songhua Liu and Xinchao Wang

National University of Singapore

Contact: songhua.liu@u.nus.edu