

Optimal Transport for Treatment Effect Estimation

Speaker: Hao Wang

Causal Inference with observational data

Background

- Treatment effect estimation: estimate the following causal estimands from data:
 - Average Treatment Effect: $ATE \coloneqq \mathbb{E}[Y_{T=1}] \mathbb{E}[Y_{T=0}]$
 - Conditional Average Treatment Effect: $CATE := \mathbb{E}[Y_{T=1}|X] \mathbb{E}[Y_{T=0}|X]$

[1] Künzel, Sören R., et al. "Metalearners for estimating heterogeneous treatment effects using machine learning." PNAS, 2019.

Research problem: selection bias

- Selection bias: the causation $T \rightarrow Y$ is confounded by the association $T \leftarrow X \rightarrow Y$
 - It is falsely introduced in data generation process.
 - It manifests as the **discrepancies of covariates** (X) across treatment groups.

RCT to tackle selection bias

- RCT is a golden approach to eliminate confounding bias. Why?
 - **Randomization** makes covariate balance: $\mathbb{P}(X \mid T = 1) = \mathbb{P}(X \mid T = 0), T \perp X$
 - Covariate balance makes association is causation: $\mathbb{P}(Y \mid do(T = t)) = \mathbb{P}(Y \mid T = t)$

Adjustment as an alternative to RCT

- RCT is a golden approach to eliminate confounding bias. Why?
 - Randomization Adjustment makes covariate balance: $\mathbb{P}(X \mid T = 1) = \mathbb{P}(X \mid T = 0), T \perp X$
 - Covariate balance makes association is causation: $\mathbb{P}(Y \mid do(T = t)) = \mathbb{P}(Y \mid T = t)$

Previous Work

Adjustment with CFR

- Goal: generate balanced distribution between different treatment groups.
- CounterFactual Regression [2]: project covariates to a balanced representation space.

Theorem A.1. Let ψ and ϕ be the maps in Definition 2.2, \mathcal{F} be a predefined sufficiently large function family of ϕ , IPM_{\mathcal{F}} be the integral probability metric induced by \mathcal{F} . Assume there exists a constant $B_{\psi} > 0$, such that for $t \in \{0, 1\}$, $\frac{1}{B_{\psi}} \cdot l_{\psi, \phi}(x, t) \in \mathcal{F}$ holds. Uri et al. [63] demonstrate:

$$\epsilon_{\text{PEHE}}(\psi,\phi) \le 2\left(\epsilon_{\text{F}}^{\text{T=0}}(\psi,\phi) + \epsilon_{\text{F}}^{\text{T=1}}(\psi,\phi) + B_{\psi}\text{IPM}_{\mathcal{F}}\left(\mathbb{P}_{\psi}^{\text{T=1}},\mathbb{P}_{\psi}^{\text{T=0}}\right) - 2\sigma_{Y}^{2}\right), \quad (24)$$

where $\epsilon_{\rm F}^{\rm T=0}$ and $\epsilon_{\rm F}^{\rm T=1}$ follow Definition A.3, $\mathbb{P}_{\psi}^{\rm T=1}(r)$ and $\mathbb{P}_{\psi}^{\rm T=0}(x)$ follow Definition A.4.

Adjustment with CFR

- Core of CFR [2]: accurate calculation of distribution discrepancy.
 - Inaccurate discrepancy->false update of estimators->biased inference
- Research problem: How to devise discrepancy that can be accurately calculated in the specific context of causal inference?

• Current divergences fail in the situations as follows:

Concerned properties	Wasserstein	f-divergence	GAN-based	MMD	Ours
Free of adversarial training	\checkmark	\checkmark	×	\checkmark	\checkmark
Non-overlapped supports	\checkmark	×	\checkmark	\checkmark	\checkmark
Mini-batch sampling effects	×	×	×	×	\checkmark
Unobserved confounding effects	×	×	×	×	\checkmark

[2] Shalit, Uri et al. "Estimating individual treatment effect: generalization bounds and algorithms." *ICML*, 2017.

Methodology

Optimal transport: formulation and application to CFR

• **Optimal Transport (OT):** For empirical distributions α and β with n and m samples, OT aims to find an optimal plan $\pi \in R^{n \times m}_+$ that minimizes the transport cost between α and β . Formally, the problem is defined as:

 $W(\alpha,\beta) = \min_{\pi \in \Pi(\alpha,\beta)} \langle \boldsymbol{C}, \boldsymbol{\pi} \rangle, \qquad \Pi(\alpha,\beta) = \{ \boldsymbol{\pi} \in R_+^{n \times m} : \boldsymbol{\pi} \mathbf{1}_{\mathrm{m}} = \boldsymbol{a}, \boldsymbol{\pi}^T \mathbf{1}_{\mathrm{n}} = \mathbf{b} \}$

where $W(\alpha, \beta)$ is the transport cost, $C \in \mathbb{R}^{n \times m}_+$ denotes the sample-wise distance between α and β . $\mathbf{1}_m$ and $\mathbf{1}_n$ are column vectors filled with ones. \boldsymbol{a} and \boldsymbol{b} specify the mass of units in α and β .

- We formulate causal inference as an OT problem, where the discrepancy in CFR is computed as the OT cost between the treatment groups.
 - **Unbiased estimator** with theoretical foundations.
 - **Numerical stability** compared with other discrepancy measures (GAN, f-divergence).
 - Flexibility to incorporate task properties by editing the transport problem.

Methodology

Minibatch sampling effect issue with CFR

- Minibatch sampling effect.
 - Minibatch-level outliers, see Fig.2 (b).
 - Minibatch-level outcomeimbalance , see Fig.2 (c).
- Why does it exist?

Theorem 3.1. Let ψ and ϕ be the representation mapping and factual outcome mapping, respectively; $\hat{\mathbb{W}}_{\psi}$ be the group discrepancy at a mini-batch level. With the probability of at least $1 - \delta$, we have:

$$\epsilon_{\text{PEHE}}(\psi,\phi) \le 2[\epsilon_{\text{F}}^{T=1}(\psi,\phi) + \epsilon_{\text{F}}^{T=0}(\psi,\phi) + B_{\psi}\hat{\mathbb{W}}_{\psi} - 2\sigma_{Y}^{2} + \mathcal{O}(\frac{1}{\delta N})], \tag{7}$$

where $\epsilon_{\rm F}^{T=1}$ and $\epsilon_{\rm F}^{T=0}$ are the expected errors of factual outcome estimation, N is the batch size, σ_Y^2 is the variance of outcomes, B_{ψ} is a constant term, and $\mathcal{O}(\cdot)$ is a sampling complexity term.

How to solve it?

Definition 3.2. For empirical distributions α and β with *n* and *m* units, respectively, optimal transport with relaxed mass-preserving constraint seeks the transport strategy π at the minimum cost:

$$\mathbb{W}^{\epsilon,\kappa}(\alpha,\beta) \coloneqq \langle \mathbf{D}, \boldsymbol{\pi} \rangle, \boldsymbol{\pi} \coloneqq \arg\min_{\boldsymbol{\pi}} \langle \mathbf{D}, \boldsymbol{\pi} \rangle - \epsilon \mathbf{H}(\boldsymbol{\pi}) + \kappa (\mathbf{D}_{\mathrm{KL}}(\boldsymbol{\pi} \mathbf{1}_m, \mathbf{a}) + \mathbf{D}_{\mathrm{KL}}(\boldsymbol{\pi}^{\mathrm{T}} \mathbf{1}_n, \mathbf{b}))$$
(9)

where $\mathbf{D} \in \mathbb{R}^{n \times m}_+$ is the unit-wise distance, and \mathbf{a} , \mathbf{b} indicate the mass of units in α and β , respectively. **Corollary 3.1.** For empirical distributions α, β with n and m units, respectively, adding an outlier a' to α and denoting the disturbed distribution as α' , we have

$$\mathbb{W}^{0,\kappa}(\alpha',\beta) - \mathbb{W}^{0,\kappa}(\alpha,\beta) \le 2\kappa (1 - e^{-\sum_{b\in\beta} (a'-b)^2/2\kappa})/(n+1), \tag{10}$$

which is upper bounded by $2\kappa/(n+1)$. $\mathbb{W}^{0,\kappa}$ is the unbalanced discrepancy as per Definition 3.2.

Figure 2: Optimal transport plan (upper) and its geometric interpretation (down) in three cases, where the connection strength depicts the transported mass. Different colors (vertical positions) indicate different treatments (outcomes).

Figure 4: Geometric interpretation of OT plan with RMPR under the outcome imbalance (upper) and outlier (down) settings. The dark area indicates the transported mass of a unit, *i.e.*, marginal of the transport matrix π . The light area indicates the total mass.

NEURAL INFORMATION PROCESSING SYSTEMS

Methodology

Unobserved confounding effect issue with CFR

- Effect of unobserved confounders.
 - Invalidate backdoor adjustment.
 - Mislead the update of treatment effect estimator

NEURAL INFORMATION PROCESSING SYSTEMS

Figure 3: Causal graphs with (a) and w/o (b) the unconfoundedness assumption. The shaded node indicates the hidden confounder X'.

Figure 9: A diagram showing how PFOR works and its limitations. (a) A toy example of PFOR, where R and X' indicate the balanced representations and an unobserved confounder, respectively; scatters indicate the empirical distribution of units in the treated and control groups; for solid scatters with balanced R, the colored dashed line indicates the ground truth outcome $Y = \sqrt{R_1^2 + R_2^2 + X'^2}$ in each group, the black dashed line measures the difference of unobserved X'. (b) Cases that satisfy Assumption D.1, where the the outcome Y is monotone with unobserved X' given observed confounders in R. (c) Cases that violate Assumption D.1, where the Y is non-monotone with X'.

How to solve it?

•
$$D_{ij}^{\gamma} = \|r_i - r_j\|^2 + \gamma \left[\|y_i^{T=0} - y_j^{T=0}\|^2 + \|y_i^{T=1} - y_j^{T=1}\|^2 \right]$$

Proximal Factual Outcome Regularizer

- Limitations.
 - Partial identification of transport strategy given monotonic covariate effect.
 - OT meets partial identification: an interesting topic which warrants further investigation

Experiments

Overall performance

Table 1: Performance (mean±std) on the PEHE and AUUC metrics. "*" marks the baseline estimators that ESCFR outperforms significantly at p-value < 0.05 over paired samples t-test.

Dataset	ACIC (PEHE)		IHDP (IHDP (PEHE)		ACIC (AUUC)		IHDP (AUUC)	
Model	In-sample	Out-sample	In-sample	Out-sample	In-sample	Out-sample	In-sample	Out-sample	
OLS	$3.749 \pm 0.080^*$	4.340±0.117*	3.856±6.018	5.674±9.026	0.843±0.007	$0.496 \pm 0.017^*$	0.652 ± 0.050	$0.492 \pm 0.032^*$	
R .Forest	3.597±0.064*	3.399±0.165*	2.635 ± 3.598	4.671±9.291	0.902 ± 0.016	$0.702 \pm 0.026^*$	0.736 ± 0.142	0.661±0.259	
S.Learner	3.572±0.269*	3.636±0.254*	$1.706 \pm 1.600^{*}$	3.038 ± 5.319	0.905±0.041	$0.627 \pm 0.014^*$	0.633 ± 0.183	0.702 ± 0.330	
T.Learner	3.429±0.142*	3.566±0.248*	1.567±1.136*	2.730 ± 3.627	0.846±0.019	$0.632 \pm 0.020^{*}$	0.651 ± 0.179	0.707 ± 0.333	
TARNet	3.236±0.266*	3.254±0.150*	0.749 ± 0.291	1.788 ± 2.812	0.886 ± 0.046	$0.662 \pm 0.014^*$	0.654 ± 0.184	0.711±0.329	
C.Forest	3.449±0.101*	3.196±0.177*	4.018±5.602*	4.486±8.677	0.717±0.005*	$0.709 \pm 0.018^*$	0.643±0.141	0.695 ± 0.294	
k-NN	5.605±0.168*	5.892±0.138*	2.208±2.233*	4.319±7.336	$0.892 \pm 0.007^*$	$0.507 \pm 0.034^*$	0.725 ± 0.142	0.668 ± 0.299	
O.Forest	8.094±4.669*	4.148±2.224*	$2.605 \pm 2.418^*$	3.136 ± 5.642	0.744 ± 0.013	$0.699 \pm 0.022^*$	0.664 ± 0.157	0.702 ± 0.325	
PSM	5.228±0.154*	5.094±0.301*	3.219±4.352*	4.634±8.574	0.884 ± 0.010	0.745 ± 0.021	0.740±0.149	0.681±0.253	
BNN	3.345±0.233*	3.368±0.176*	0.709 ± 0.330	1.806 ± 2.837	0.882±0.033	$0.645 \pm 0.013^*$	0.654 ± 0.184	0.711±0.329	
CFR-MMD	3.182±0.174*	3.357±0.321*	0.777±0.327	1.791±2.741	0.871 ± 0.032	$0.659 \pm 0.017^*$	0.655 ± 0.183	0.710 ± 0.329	
CFR-WASS	3.128±0.263*	3.207±0.169*	0.657 ± 0.673	1.704 ± 3.115	0.873±0.029	$0.669 \pm 0.018^*$	0.656 ± 0.187	0.715±0.311	
ESCFR	2.252±0.297	2.316±0.613	0.502±0.252	1.282±2.312	0.796±0.030	0.754±0.021	0.665±0.166	0.719±0.311	

Experiments

Ablation & sensitivity studies

			In-sample		Out-sa	ample
SOT	RMPR	PFOR	PEHE	AUUC	PEHE	AUUC
×	X	X	3.2367±0.2666*	0.8862+0.0462	3.2542+0.1505*	0.6624+0.0149*
1	×	×	3.1284±0.2638*	0.8734+0.0291	3.2073+0.1699*	0.6698+0.0187*
~	1	×	2.6459+0.2747*	0.8356+0.0286	2.7688±0.4009	0.7099+0.0157*
1	×	1	2.5705±0.3403*	0.8270±0.0341	2.6330±0.4672	0.7110±0.0287*
~	\checkmark	~	2.2520±0.2975	0.7968 ± 0.0307	2.3165+0.6136	0.7542±0.0202

Thanks for your listening

Speaker: Hao Wang Contact: haohaow@zju.edu.cn