

Brant: Foundation Model for Intracranial Neural Signal

Daoze Zhang^{1*}, Zhizhang Yuan^{1*}, Yang Yang^{1†}, Junru Chen¹, Jingjing Wang¹, Yafeng Li²

¹Zhejiang University ²Nuozhu Technology Co., Ltd

Background

Brain Signal

 Electrical impulses that are generated by brain neurons, providing important information about brain activity.

Two Monitoring Ways

- Scalp EEG: through electrodes placed on the scalp.
- Intracranial EEG: through intracranial electrodes that implants into brain tissue directly.

Scalp EEG

Intracranial EEG

Background

□ Intracranial Neural Signal (iEEG)

- Recorded by **deep** electrodes inside human brains.
- Provide **stereotactic** information from deeper brain structures.
- Furnish more abundant and detailed analysis about brain wave patterns.

Modeling Intracranial Signal: Insights

Long-term Dependency

 Gradual changes in brain activity may only be captured by the longperiod analysis.

□ Spatial Correlation

Due to the fact that brain waves propagate through different brain regions, signals recorded from different channels can be spatially correlated.

☐ Time and Frequency Domains

- Time domain: information about the amplitude and duration.
- Frequency domain: underlying oscillatory patterns and rhythms.

□ Patching

Randomly Masking

– As the pre-training task is mask-reconstruction

Frequency Encoding

- To add frequency domain information to the encoding
- The frequency encoding $\mathbf{F}_{j,c}$ of patch $p_{j,c}$ is obtained as the weighted sum of the learnable encodings of each frequency band.

 $\mathbf{W}_{ ext{proj}} oldsymbol{p}_{j:j+L-1,c}^{ ext{T}}$

Input Encoding

Temporal Encoder: Long-term Dependency

- The input encoding will be fed into the temporal encoder to obtain temporal hidden representations $h_{j:j+L-1}$.

□ Spatial Encoder: Channel Spatial Correlation

- The spatial encoder further captures the spatial correlation across channels, which outputs the final representations $z_{j:j+L-1}$.

SSL Task: Mask-Reconstruction

- The final representations will be fed into a flatten layer with linear head to get the reconstructed patches $\hat{p}_{j:j+L-1}$.
- The loss is calculated between $p_{j:j+L-1}$ and $\widehat{p}_{j:j+L-1}$.

The Largest Model on Brain Signals

 Using the method above, Brant is pre-trained on a large intracranial dataset with 1.01 TB data, containing more than 500M parameters.

Experiments

Overall Performance

 Brant achieves consistent SOTA performance on a variety of tasks compared with other baselines.

□ Low-resource Labeled Data Evaluation

- In medical scenarios, collecting labeled data is a huge investment...

Model	200 minutes	60 minutes		20 minutes	
	F2	F2	Decrease	F2	Decrease
SEEG-Net 9	$*42.28 \pm 1.10$	35.54 ± 1.90	15.94%	12.76 ± 2.13	69.82%
RP [17] TS [17] CPC [17] BENDR [18] MVTS [19]	$\begin{array}{c} 29.59 \pm 1.97 \\ 34.57 \pm 1.66 \\ 37.96 \pm 1.42 \\ 33.77 \pm 1.81 \\ 35.90 \pm 1.94 \end{array}$	$\begin{array}{r} 27.62 \pm 2.03 \\ 30.15 \pm 3.05 \\ 30.55 \pm 3.01 \\ 25.37 \pm 3.12 \\ 26.62 \pm 3.11 \end{array}$	*6.66% 12.79% 19.52% 24.87% 25.85%	$\begin{array}{c} 25.05 \pm 1.98 \\ 29.61 \pm 3.34 \\ 29.57 \pm 3.74 \\ 22.18 \pm 4.09 \\ 24.39 \pm 4.01 \end{array}$	15.34% *14.35% 22.10% 34.32% 32.06%
BrainBERT [20] PatchTST [27] TS-TCC [39] TF-C [38]	$\frac{43.60 \pm 0.98}{23.27 \pm 1.26}$ $\frac{27.91 \pm 1.19}{19.02 \pm 1.24}$	$\frac{41.93 \pm 2.09}{18.02 \pm 2.23}$ $\frac{25.35 \pm 2.07}{15.97 \pm 1.23}$	<u>3.84</u> % 22.55% 9.17% 16.04%	$\frac{36.35 \pm 3.23}{17.07 \pm 2.11}$ 20.36 ± 1.90 13.66 ± 2.10	16.63% 26.64% 27.05% 28.18%
CoST [<u>37</u>] Brant	40.03±1.88 56.50±1.08	*39.18±3.02 52.30±2.04	2.12 % 7.43%	36.10±4.12 51.03±2.74	<u>9.82</u> % 9.68 %

□ Low-resource Labeled Data Evaluation

– In medical scenarios, collecting labeled data is a huge investment...

Model	200 minutes	60 mir	60 minutes		inutes
	F2	F2	Decrease	F2	Decrease
SEEG-Net 9	$*42.28 \pm 1.10$	35.54 ± 1.90	15.94%	12 76+2 13	69.82%
RP [17]	29.59 ± 1.97	$27.62\pm$ Bra	ant maint	ains the	most stable
TS [17]	34.57 ± 1.66	30.15± per	formance	on 20-min	n labeled data.
CPC [17]	37.96 ± 1.42	30.55 ± 3.01	19.52%	29.37±3.74	22.10%
BENDR [18]	33.77 ± 1.81	25.37 ± 3.12	24.87%	22.18 ± 4.09	34.32%
MVTS [19]	35.90 ± 1.94	26.62 ± 3.11	25.85%	24.39 ± 4.01	32.06%
BrainBERT [20]	43.60 ± 0.98	41.93 ± 2.09	<u>3.84</u> %	36.35 ± 3.23	16.63%
PatchTST [27]	23.27 ± 1.26	18.02 ± 2.23	22.55%	17.07 ± 2.11	26.64%
TS-TCC 39	27.91 ± 1.19	25.35 ± 2.07	9.17%	20.36 ± 1.90	27.05%
TF-C [38]	19.02 ± 1.24	15.97 ± 1.23	16.04%	13.66 ± 2.10	28.18%
CoST [37]	40.03 ± 1.88	*39.18±3.02	2.12%	36.10±4.12	<u>9.82</u> %
Brant	$56.50{\scriptstyle \pm 1.08}$	52.30±2.04	7.43%	$51.03{\scriptstyle\pm2.74}$	9.68%

□ Low-resource Labeled Data Evaluation

– In medical scenarios, collecting labeled data is a huge investment...

Model	200 minutes	60 minutes		20 minutes		
	F2	F2	Decrease	F2	Decrease	
SEEG-Net 9	*42.28 F2 s	core of our	model on	20-min labe	eled data	
RP [17]	$\frac{1}{29.59}$ is even higher than that of the best baseline					
TS [17]	34.57 on 200-min labeled data.					
	37.96 ± 1.42	50.55 ± 3.01	19.52%	29.57 ± 3.74	22.10%	
BENDR [18] MVTS [19]	35.77 ± 1.81	25.57 ± 3.12 26.62 ± 2.11	24.87%	22.18 ± 4.09 24.39 ± 4.01	34.32% 32.06%	
BrainBERT [20]	43.60 ± 0.98	20.02 ± 3.11 41.93 ± 2.09	$\frac{23.83\%}{3.84\%}$	36.35 ± 3.23	16.63%	
PatchTST [27]	23.27±1.26	18.02 ± 2.23	22.55%	17.07±2.11	26.64%	
TS-TCC 39	27.91 ± 1.19	25.35 ± 2.07	9.17%	20.36 ± 1.90	27.05%	
TF-C [<u>38</u>]	19.02 ± 1.24	15.97 ± 1.23	16.04%	13.66 ± 2.10	28.18%	
CoST [<u>37</u>]	40.03 ± 1.88	$*39.18 \pm 3.02$	2.12%	36.10 ± 4.12	<u>9.82</u> %	
Brant	$56.50{\scriptstyle \pm 1.08}$	52.30±2.04	7.43%	51.03±2.74	9.68%	

☐ Representation Analysis

 We visualize the pre-trained representations of Brant and three most representative methods using t-SNE.

□ Model Scale Analysis

- As the model size increases,
 - the performances show an overall upward trend, indicating that a larger model with a higher capacity results in better ability.
 - the decrease in the standard deviation indicates **more stable performance for larger models.**

Conclusions

- □ We propose a task-agnostic foundation model, Brant, which is **the largest** pre-training model on brain signals.
- □ Experimentally, Brant achieves **consistent SOTA** performance on various downstream tasks w.r.t. medical scenarios.
- □ Brant is an **off-the-shelf** model with its code and weights, which can directly participate in other medical research and treatment.

THANKS

More relevant research of our group: *http://yangy.org* Contact: *zhangdz@zju.edu.cn; yangya@zju.edu.cn*