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Background
❑ Brain Signal

– Electrical impulses that are generated by brain neurons, providing 
important information about brain activity.

❑ Two Monitoring Ways
– Scalp EEG: through electrodes placed on the scalp.
– Intracranial EEG: through intracranial electrodes that implants into 

brain tissue directly.

Scalp EEG Intracranial EEG
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Background
❑ Intracranial Neural Signal (iEEG)

– Recorded by deep electrodes inside human brains. 
– Provide stereotactic information from deeper brain structures.
– Furnish more abundant and detailed analysis about brain wave 

patterns.
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Modeling Intracranial Signal: Insights
❑ Long-term Dependency

– Gradual changes in brain activity may only be captured by the long-
period analysis. 

❑ Spatial Correlation
– Due to the fact that brain waves propagate through different brain 

regions, signals recorded from different channels can be spatially 
correlated.

❑ Time and Frequency Domains
– Time domain: information about the amplitude and duration.
– Frequency domain: underlying oscillatory patterns and rhythms.
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Brant
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❑ Patching
❑ Randomly Masking

– As the pre-training task is mask-reconstruction
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Brant
❑ Frequency Encoding

– To add frequency domain information to the encoding
– The frequency encoding 𝐅!,# of patch 𝒑!,# is obtained as the 

weighted sum of the learnable encodings of each frequency band.
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Brant
❑ Input Encoding

– For each sequence of patches 𝒑!:!%&'(,# , we use a linear projection 
and add the positional encoding and the frequency encoding 
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Brant
❑ Temporal Encoder: Long-term Dependency

– The input encoding will be fed into the temporal encoder to obtain 
temporal hidden representations 𝒉!:!%&'( . 
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Brant
❑ Spatial Encoder: Channel Spatial Correlation

– The spatial encoder further captures the spatial correlation across 
channels, which outputs the final representations 𝒛!:!%&'( . 
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Brant
❑ SSL Task: Mask-Reconstruction

– The final representations will be fed into a flatten layer with linear 
head to get the reconstructed patches %𝒑!:!%&'( . 

– The loss is calculated between 𝒑!:!%&'( and %𝒑!:!%&'( . 
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❑ The Largest Model on Brain Signals
– Using the method above, Brant is pre-trained on a large intracranial 

dataset with 1.01 TB data, containing more than 500M parameters.

Brant
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❑ Overall Performance
– Brant achieves consistent SOTA performance on a variety of 

tasks compared with other baselines.

Experiments

Please refer to the paper for detailed results.
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❑ Low-resource Labeled Data Evaluation
– In medical scenarios, collecting labeled data is a huge investment…

Model Analysis
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❑ Low-resource Labeled Data Evaluation
– In medical scenarios, collecting labeled data is a huge investment…

Model Analysis

Brant maintains the most stable
performance on 20-min labeled data.
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Model Analysis

F2 score of our model on 20-min labeled data 
is even higher than that of the best baseline 
on 200-min labeled data.

❑ Low-resource Labeled Data Evaluation
– In medical scenarios, collecting labeled data is a huge investment…
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Model Analysis
❑ Representation Analysis

– We visualize the pre-trained representations of Brant and three most 
representative methods using t-SNE.

Compared to other methods, the representations 
of seizure and normal signals learned from Brant 
are separated more clearly.
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Model Analysis
❑ Model Scale Analysis

– As the model size increases,
• the performances show an overall upward trend, indicating that a larger 

model with a higher capacity results in better ability. 
• the decrease in the standard deviation indicates more stable performance for 

larger models.
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Conclusions

THANKS
More relevant research of our group: http://yangy.org
Contact: zhangdz@zju.edu.cn; yangya@zju.edu.cn

❑ We propose a task-agnostic foundation model, Brant, which is the 
largest pre-training model on brain signals.

❑ Experimentally, Brant achieves consistent SOTA performance on 
various downstream tasks w.r.t. medical scenarios. 

❑ Brant is an off-the-shelf model with its code and weights, which can 
directly participate in other medical research and treatment.


