

Coupled Reconstruction of Cortical Surfaces by Diffeomorphic Mesh Deformation

Hao Zheng, Hongming Li, Yong Fan

Research Laboratory for Machine Learning and Biomedical Data Analytics AI2D: Center for AI and Data Science for Integrated Diagnostics Center for Biomedical Image Computing and Analytics (CBICA) Perelman School of Medicine, University of Pennsylvania

Background

Human cerebral cortex

- Left/right hemispheric cerebral cortices are thin (avg. 2.5mm thickness) sheets with spherical topology
- $\hfill\square$ The cerebral cortex is highly convoluted with complex folded patterns

Cortical surface reconstruction (CSR) plays an important role in surfacebased analyses of the cerebral cortex

CSR Challenges

- Traditional methods
 FreeSurfer: 6h/subject
- DL methods for CSR
 Implicit methods
 Explicit methods
- Limitations
 - □ *Interdependence* between the inner and outer surfaces is not considered
 - Complex and *parallel* DL architectures (CNN+GNN/MLP) are used

Coarse mesh template initialization makes the CSR more challenging
 The methods are not equipped with cortical *thickness* estimation

Coupled Reconstruction of Cortical Surfaces

(a) Surface initialization

(b) Cortical surface reconstruction network

- > Find a better *initialization* surface: midthickness surface
- Reconstruct both white matter and pial surfaces in a *coupled* manner

➤ The closer the initial surface is to its target surface, the higher the reconstruction accuracy is

- Midthickness surface initialization
 - \Box Generate WM/GM segmentation maps: M_W , M_G
 - Compute distance transform
 - Signed distance function (SDF): K_W , K_G
 - SDF of midthickness surface: K_M
 - □ Perform topology check and correction
 - \Box Extract the initialization surface S_0 by Marching Cubes algorithm

NEURAL INFORMATION PROCESSING SYSTEMS

- Feature extraction from the input with multiple complementary information
 - **Brain MRI**: detailed texture and semantic information
 - □ Ribbon segmentation maps: structural/semantic information
 - □ SDF: surface location and relative relation between all voxel

Initial Surface

Coupled Learning of Cortical Surfaces \Box GM/WM/midthickness surfaces are optimized with three diffeomorphic deformations $f_{\theta}(I_{comb}, S_0) = (\phi_M, \phi_W, \phi_G)$ $\circ S_0 \rightarrow S_M \qquad S_M \rightarrow S_W \qquad S_M \rightarrow S_G$

Coupled Learning of Cortical Surfaces

□ GM/WM/midthickness surfaces are optimized with three diffeomorphic deformations $f_{\theta}(I_{comb}, S_0) = (\phi_M, \phi_W, \phi_G)$

 \Box The deformations are modeled with invertible transformation: $S_M \to S'_W \to S'_M$; $S_M \to S'_M$

FURAL INFOR

PROCESSING SYSTEMS

Coupled Learning of Cortical Surfaces

□ Three diffeomorphic deformations $f_{\theta}(I_{comb}, S_0) = (\phi_M, \phi_W, \phi_G)$

□ Invertible transformation

Diffeomorphic deformation module (DDM)

$$\frac{d\phi(\mathbf{x},t)}{dt} = \mathbf{v}(\phi(\mathbf{x},t),t)$$

and thus $\phi(\mathbf{x},t) = \phi(\mathbf{x},0) + \int_0^t \mathbf{v}(\phi(\mathbf{x},t),t) dt$

$$\circ \vec{v}_{\mathbf{X}} = Lint(\vec{v}_{N(\mathbf{X})})$$
$$\circ \vec{v}_{\mathbf{X}} \cdot \frac{1}{T}$$

Loss Functions

\succ Mesh loss

- $\square Bidirectional Chamfer distance \quad \mathcal{L}_{chW} = \sum_{\mathbf{p} \in \mathcal{S}_W} \min_{\mathbf{p}_* \in \mathcal{S}_{W_*}} \|\mathbf{p} \mathbf{p}_*\|_2^2 + \sum_{\mathbf{p}_* \in \mathcal{S}_W} \min_{\mathbf{p} \in \mathcal{S}_W} \|\mathbf{p}_* \mathbf{p}\|_2^2$
- Symmetric cycle loss
 Invertibility
 \$\mathcal{L}_{cyc} = \frac{1}{N} \sum_{\mathbf{p} \in S_M} \|\mathbf{p}_{\phi_W \circ \phi_G} \mathbf{p}\|_2^2 + \|\mathbf{p}_{\phi_G \circ \phi_W} \mathbf{p}\|_2^2\$
 Symmetric similarity loss
 Symmetry of SVFs
 \$\mathcal{L}_{ss} = \|\mathbf{v}_G \bar{\mathbf{v}}_W\|_2^2\$
- Normal consistency loss

$$\Box \text{ Surface regularity } \mathcal{L}_{nc} = \sum_{e \in E, f_0 \cap f_1 = e} (1 - \cos(\mathbf{n}_{f_0}, \mathbf{n}_{f_1}))$$

Experiments

Datasets

- ADNI-1 dataset: 654, 50, and 113 for training, validation, and test.
- □ OASIS dataset: 330, 25, and 58 for training, validation, and test.
- □ Pseudo ground-truth of segmentation and surfaces generated by FreeSurfer v7.2.0.

➤ Baselines

- □ Implicit: DeepCSR
- □ Explicit: PialNN, CorticalFlow/++, cortexODE, vox2cortex

\succ Metrics

□ Accuracy

- Chamfer distance (CD)
- o Average symmetric surface distance (ASSD)
- o 90th percentile Hausdorff distance (HD)

□ Surface quality

o Ratio of self-intersection faces (SIF)

Comparison with SOTA Methods

			L-Pial	Surface		L-WM Surface				
	Method	CD(mm)	ASSD(mm)	HD(mm)	SIF (%)	CD(mm)	ASSD(mm)	HD(mm)	SIF (%)	
INDA	DeepCSR 🖽]	0.945 ± 0.078	$0.593 {\pm} 0.065$	1.149 ± 0.203	\	0.938 ± 0.076	$0.587 {\pm} 0.064$	$1.137 {\pm} 0.193$	\	
	PialNN [3]	0.621 ± 0.035	$0.465 {\pm} 0.044$	1.002 ± 0.106	$0.137 {\pm} 0.093$	Ν.	\	\	\	
	CorticalFlow [23]	0.691 ± 0.043	0.497 ± 0.049	$1.106 {\pm} 0.115$	$0.149 {\pm} 0.087$	0.641 ± 0.037	$0.465 {\pm} 0.042$	$0.996 {\pm} 0.100$	$0.108 {\pm} 0.073$	
	CorticalFlow++ [47]	0.545 ± 0.036	$0.410 {\pm} 0.033$	$0.886 {\pm} 0.069$	$0.098 {\pm} 0.067$	0.544 ± 0.034	0.401 ± 0.030	$0.878 {\pm} 0.066$	0.069 ± 0.042	
	cortexODE [30]	0.476 ± 0.017	$0.214 {\pm} 0.020$	$0.455 {\pm} 0.058$	0.022±0.012	0.458 ± 0.016	$0.192 {\pm} 0.015$	$0.436 {\pm} 0.014$	0.015 ± 0.011	
	Vox2Cortex [19]	$0.582 {\pm} 0.028$	$0.370 {\pm} 0.025$	$0.746 {\pm} 0.057$	$0.059 {\pm} 0.039$	0.577 ± 0.027	$0.353 {\pm} 0.022$	$0.722 {\pm} 0.055$	0.043 ± 0.023	
	Ours	0.410 ±0.016	0.136 ±0.012	0.293 ±0.026	$0.035 {\pm} 0.021$	0.213 ±0.008	0.071 ± 0.005	0.155 ± 0.012	$\textbf{0.007}{\pm}0.010$	
	DeepCSR 🖽]	$0.986 {\pm} 0.085$	$0.617 {\pm} 0.070$	$1.331 {\pm} 0.212$	\	0.975±0.081	0.594±0.067	1.151±0.197	\	
	PialNN [3]	0.635 ± 0.032	$0.460 {\pm} 0.038$	0.993 ± 0.082	0.141 ± 0.096	\	\	\	\	
S	CorticalFlow [25]	0.687 ± 0.040	$0.495 {\pm} 0.047$	$1.082 {\pm} 0.110$	$0.147 {\pm} 0.086$	0.637 ± 0.035	$0.462 {\pm} 0.040$	$0.992 {\pm} 0.097$	0.101 ± 0.070	
OASI	CorticalFlow++ [47]	0.531 ± 0.035	$0.399 {\pm} 0.030$	$0.812 {\pm} 0.057$	$0.088 {\pm} 0.045$	0.529 ± 0.033	$0.398 {\pm} 0.030$	$0.810 {\pm} 0.055$	$0.086 {\pm} 0.042$	
	cortexODE [34]	0.481 ± 0.019	$0.218 {\pm} 0.021$	0.461 ± 0.062	$\textbf{0.026}{\pm}0.015$	0.463 ± 0.018	0.207 ± 0.017	$0.435 {\pm} 0.015$	$0.018 {\pm} 0.010$	
	Vox2Cortex 🖽]	$0.588 {\pm} 0.032$	$0.381 {\pm} 0.030$	$0.750 {\pm} 0.063$	$0.061 {\pm} 0.037$	0.581 ± 0.028	$0.375 {\pm} 0.027$	$0.731 {\pm} 0.059$	$0.046 {\pm} 0.027$	
	Ours	0.442 ±0.014	0.161 ±0.012	0.348 ± 0.025	$0.037 {\pm} 0.023$	0.218 ±0.007	0.073 ±0.006	0.159 ±0.013	0.008 ± 0.011	

Quantitative analysis of cortical surface reconstruction on geometric accuracy and surface quality. The metrics were measured for WM and pial surfaces on two datasets. The mean value and standard deviation are reported. The best ones are in bold

➢ Input

0	Input			Initial mesh	[L-Pial Surface		L-WM Surface			
Setting	Ι	SDF	Seg	# of Lap. Sm.	CD (mm)	ASSD (mm)	HD(mm)	CD (mm)	ASSD (mm)	HD(mm)	
IO	1	1	1	0	0.410 ± 0.016	$0.136 {\pm} 0.012$	0.293 ± 0.026	$0.213 {\pm} 0.008$	0.071 ± 0.005	$0.155 {\pm} 0.012$	
I1	1	~		0	0.426 ± 0.017	$0.167 {\pm} 0.017$	$0.358 {\pm} 0.038$	0.222 ± 0.011	$0.075 {\pm} 0.006$	0.164 ± 0.013	
I2	1			0	0.453 ± 0.021	$0.201 {\pm} 0.026$	$0.438 {\pm} 0.074$	$0.250 {\pm} 0.013$	$0.085 {\pm} 0.008$	$0.184 {\pm} 0.016$	
M1	1	1	1	10	0.416 ± 0.016	0.147 ± 0.013	0.315 ± 0.028	0.225 ± 0.010	$0.084 {\pm} 0.007$	$0.184 {\pm} 0.015$	
M2	1	1	1	20	0.429 ± 0.018	$0.163 {\pm} 0.017$	$0.361 {\pm} 0.040$	0.235 ± 0.012	$0.091 {\pm} 0.009$	$0.190 {\pm} 0.017$	

\succ Loss functions

Setting	Loss					L-Pial Surface				L-WM Surface			
Setting	\mathcal{L}_{CH}	\mathcal{L}_{dist}	\mathcal{L}_{cyc}	\mathcal{L}_{ss}	\mathcal{L}_{nc}	CD(mm)	ASSD(mm)	$\operatorname{HD}(mm)$	SIF (%)	CD(mm)	ASSD(mm)	HD(mm)	SIF (%)
SO	1	1	1	1	~	0.410 ± 0.016	$0.136 {\pm} 0.012$	0.293 ± 0.026	$0.035 {\pm} 0.021$	0.213 ± 0.008	0.071 ± 0.005	0.155 ± 0.012	0.007 ± 0.010
S1	1	1	1	~		0.412 ± 0.016	$0.138 {\pm} 0.012$	0.299 ± 0.026	$0.036 {\pm} 0.021$	0.213 ± 0.010	0.073 ± 0.006	$0.158 {\pm} 0.013$	$0.008 {\pm} 0.010$
S2	1	1	1			0.412 ± 0.016	$0.139 {\pm} 0.012$	0.302 ± 0.027	$0.037 {\pm} 0.022$	0.211 ± 0.009	$0.073 {\pm} 0.007$	$0.158 {\pm} 0.013$	$0.008 {\pm} 0.011$
S 3	1	1				0.409 ± 0.016	$0.135 {\pm} 0.012$	0.300 ± 0.027	$0.275 {\pm} 0.100$	0.209 ± 0.009	$0.073 {\pm} 0.007$	$0.156 {\pm} 0.013$	$0.008 {\pm} 0.011$
S 4	1					0.404 ± 0.015	0.129 ± 0.011	0.278 ± 0.024	2.522 ± 0.791	0.203 ± 0.009	0.069 ± 0.006	0.153 ± 0.013	0.009 ± 0.012

Experimental Results

- ➢ Reproducibility
 - Datasets
 - \circ A paired ADNI_{1.5&3T} dataset
 - Test-Retest dataset
- ➢ Cortical Thickness ADNI-2GO
 - o 100 AD & 100 normal controls • Compute the average cortical thickness
 - across 35 cortical regions

	Mathad	L-WM Surface							
	Wiethou	CD(mm)	ASSD(mm)	HD(mm)					
air	Ours	0.520 ±0.053	0.337 ±0.058	0.738±0.151					
-p	CortexODE	0.521 ± 0.056	$0.340 {\pm} 0.060$	$0.741 {\pm} 0.154$					
ADN	DeepCSR	0.618 ± 0.103	$0.397 {\pm} 0.080$	$0.823 {\pm} 0.211$					
	FreeSurfer	0.556 ± 0.049	$0.364 {\pm} 0.054$	$0.764 {\pm} 0.118$					
	Ours	0.451±0.019	0.235±0.030	0.492±0.059					
TRT	CortexODE	0.457 ± 0.021	$0.238 {\pm} 0.031$	$0.504 {\pm} 0.071$					
	DeepCSR	0.505 ± 0.047	$0.297 {\pm} 0.053$	$0.610 {\pm} 0.100$					
	FreeSurfer	0.476 ± 0.015	$0.253 {\pm} 0.022$	$0.519 {\pm} 0.048$					

Correlation between prediction (Y-axis) and GT thickness (X-axis) on 35 cortical regions (mm).

- A new DL framework has been developed for cortical surface reconstruction by generating a midthickness surface to initialize a **coupled reconstruction** of both the WM and pial surfaces.
- The method introduces **regularization terms** of non-negativeness of the cortical thickness and symmetric cycle-consistency of the midthickness surface's deformations to enhance the surfaces' spherical topology.
- Experiments on two large-scale neuroimage datasets have demonstrated the superior performance of the proposed method.
- The method generates an estimation of **cortical thickness**, facilitating statistical analyses of brain atrophy.

Thanks for your attention!

For any questions, please contact hzheng1@upenn.edu