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Introduction
• Reinforcement Learning (RL) has contributed to a range of sequential decision-making and control 

problems: games (Silver et al., 2016), robotic manipulation (Lee et al., 2020), chemical reactions (Zhou 
et al., 2017), efficient and targeted COVID-19 border testing via RL (Bastani et al. 2021) Nature, 
ChatGPT (https://openai.com/blog/chatgpt/)

• Despite notable successes, practical implementation of RL remains challenging
• Real-world settings pose unique challenges due to costly interactions (Dulac-Arnold et al. 2021, 

Google & DeepMind).
• In a widely-read blog post, Mannor & Tamar, 2023 suggest that RL community focus on “solving 

concrete real-world problems” (as opposed to, e.g., Atari benchmarks) & the “deployability” of RL.
• How can we make RL more efficient and build deployable RL systems and approaches?

• One potential approach to improving sample efficiency is to incorporate additional 
structural information about the problem into the learning process

• Examples: Factored decompositions, Latent or contextual MDPs, Block MDPs, Linear MDPs , 
Shape-constrained value and/or policy functions, MDPs adhering to closure under policy 
improvement, Multi-timescale or hierarchical MDPs.

https://openai.com/blog/chatgpt/


A broad class of sequential decision-making problems. We leverage their inherent structure through a 
tailored RL approach.
• Multiple independent subproblems: 𝒔 = (𝑠!, … , 𝑠") where 𝑠# = (𝑥# , 𝑤) is the state of subproblem 

𝑖 ∈ 1, … , 𝑁 , 𝑃 𝒔$ 𝒔, 𝑎 = Π#%!" 𝑃 𝑠#$ 𝑠# , 𝑎#  and 𝑞 𝑤$ 𝑤 , 𝑟 𝒔, 𝒂 = ∑#%!" 𝑟#(𝑠# , 𝑎#)
• Coupling constraint on action space 𝒜. Feasible actions:

  𝒜 𝒔 = 𝒂 ∈ 𝒜:∑#%!" 𝒅# 𝑠# , 𝑎# ≤ 𝒃 𝑤 	 where 𝒅# 𝑠# , 𝑎# , 𝒃 w ∈ 	ℝ&

Bellman equation
𝑄∗ 𝑠, 𝑎 = 𝔼(!~*(.|(,/)[𝑟 + 𝛾 max

/!∈𝒜((!)
𝑄∗ 𝑠$, 𝑎$ |𝑠, 𝑎]

Real-world applications: supply chain management, recommender systems, 
EV charging, online advertising, revenue management, stochastic job scheduling, etc.

Challenges:
• Exponential growth of state and action spaces
• Intractability with naive RL algorithms

Weakly Coupled MDPs (WCMDPs)
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An approximation technique that decomposes WCMDPs
• by relaxing the linking constraints to obtain separate subproblems
• these separate problems are much easier to solve when considered individually

For any 𝝀 ∈ ℝ!" , let

𝑄𝝀 𝒔, 𝒂 = 𝑟 𝒔, 𝒂 + 𝝀$ 𝒃 𝑤 −.
%&'

(

𝒅% 𝑠% , 𝑎% + 	𝛾𝐄 max
𝒂!∈𝒜

	𝑄𝝀 𝒔,, 𝒂, 𝒔, 𝒂

 Proposition 
•  (Weak Duality). Q∗ 𝒔, 𝒂 ≤ 𝑄𝝀 𝒔, 𝒂  for any, 𝝀 ∈ ℝ!. , 𝒂 ∈ 𝒜(𝒔)

•  (Decomposition). 𝑄𝝀 𝒔, 𝒂 = 𝝀$𝑩(𝑤) + ∑%&'( 𝑄%𝝀(𝑠% , 𝑎%), where 

𝑄%𝝀 𝑠% , 𝑎% = 𝑟% 𝑠% , 𝑎% − 𝝀$𝒅% 𝑠% , 𝑎% + 𝛾𝐄 max
/"
!∈𝒜#

𝑄%𝝀 𝑠%,, 𝑎%, 	and 𝑩 𝑤 = 𝒃 𝑤 + 𝛾	𝐸[𝑩(𝑤′)]

Lagrangian dual problem:

Q𝛌∗ 𝐬, 𝐚 = min
𝛌
	Q𝛌(𝐬, 𝐚)

Lagrangian Relaxation



Weakly Coupled Q-learning (WCQL)

Main idea is to use the collected experience 𝝉 efficiently by learning from the full problem 
experience using a main agent and at the same time from the subproblems experience 𝝉G 
using subagents to generate an upper bound on 𝑄∗

𝝉 = (𝒔, 𝒂, 𝒓, 𝒔$, 𝒃)
𝝉# = 𝒔𝒊, 𝒂𝒊, 𝒓𝒊, 𝒔𝒊$  



WCQL algorithm comprises three main steps
 Step 1: Subproblems and Subagents

𝑄%,2!'3 𝑠% , 𝑎% = 𝑄%,23 𝑠% , 𝑎% + 𝛽2 𝑠% , 𝑎% [𝑟% 𝑠% , 𝑎% − 𝜆$𝒅 𝑠% , 𝑎% + 𝛾max/#!𝑄%,2
3 𝑠% , 𝑎% ]

Step 2: Learning the Lagrangian Bounds

𝑩2!' 𝑤 = 𝑩2 𝑤 + 𝜂2 𝑤 𝒃 𝑤 + 𝛾𝑩2 𝑤, − 𝑩2(𝑤)

𝑄2!'3 𝒔, 𝒂 = 𝜆$𝑩2!' 𝑤 +.
%&'

(

𝑄%,2!'3 𝑠% , 𝑎%

𝑄2!'3∗ 𝒔, 𝒂 = min
3∈4

𝑄2!'3 𝒔, 𝒂

Step 3: Q-Learning Guided by Lagrangian Bounds

𝑄2!' 𝒔, 𝒂 = 𝑄2, 𝒔, 𝒂 + 𝛼2 𝒔, 𝒂 𝑟 𝒔, 𝒂 + 𝛾 max
𝒂!∈𝒜 𝒔!

𝑄2, 𝒔,, 𝒂,

𝑄"# 𝒔, 𝒂 = min(𝑄"$%&∗ 𝒔, 𝒂 ,	𝑄"$% 𝒔, 𝒂 )

Weakly Coupled Q-learning (WCQL)



Convergence Guarantees

Theorem (Convergence of WCQL). Under typical assumptions on the 
learning rates and the state visit, the following hold with probability 1:

1. For each 𝑖 and 𝝀 ∈ 𝚲, 𝑄!,#𝝀 (𝑠! , 𝑎!) converges to 𝑄!
𝝀,∗(𝑠! , 𝑎!) for all

𝑠! , 𝑎! ∈ 𝒮!×𝒜!

2. For each 𝝀 ∈ 𝚲, 𝑄#𝝀 𝒔, 𝒂 ≥ 𝑄∗ 𝒔, 𝒂  as 𝑛 → ∞ for all 𝒔, 𝒂 ∈ 𝒮×𝒜
3.  𝑄′#(𝒔, 𝒂) converges to 𝑄∗ 𝒔, 𝒂  for all (𝒔, 𝒂) ∈ 𝒮×𝒜



Weakly Coupled Deep Q-Networks

𝑎~	𝜖-greedy(Q)
Store transition in buffer

Update the subproblems Q-network 
using stochastic gradient descent (SGD)

Combine the subproblems to obtain 
the Lagrangian upper bounds and 
find the best upper bound target

Compute main target and do a stochastic 
gradient descent on the soft constrained 
objective

Initialize main Q-network, subproblems 
network, and their target networks

Sample a minibatch and 𝜆𝑠 
sample

Remarks: 
1. Knowledge of environment 

dynamics is not required
2. We use a single network to 

learn the all subproblems 
action-values by augmenting 
the subproblem state and 
the subproblem number

3. Since the 𝛌s are decoupled 
from the transitions, each 
environment transition can 
be used to learn 𝑄& for a 
large sample of 𝝀𝑠 



Numerical Experiments

Weakly Coupled Q-learning
• EV Charging with Exogenous Electricity Cost (Yu et al . 2018)

• N=3 charging spots; available charging spots depends on electricity cost
• Vehicles arrive with a random charging load and duration

Relative Error
𝑉 − 𝑉∗ 4	/ 𝑉∗ 4 

Performance plot



Numerical Experiments
Weakly Coupled Deep Q-Networks

• Multi-product Inventory Control with an 
Exogenous Production Rate (Hodge and 
Glazebrook 2011)

• Resource allocation for a facility that manufactures 
K=10 products

• Production rates depend on resource allocation 
and exogenous factors

• In total there are 3'6 total actions and a 
continuous state space 

• Online Stochastic Ad Matching (Feldman et al., 
2009)

• Matching N=6 advertisers to arriving impressions
• Advertiser states represent the number of 

remaining ads to display
• Rewards depend on the impression type

Multi-product Inventory Control

Online Stochastic Ad. Matching 
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