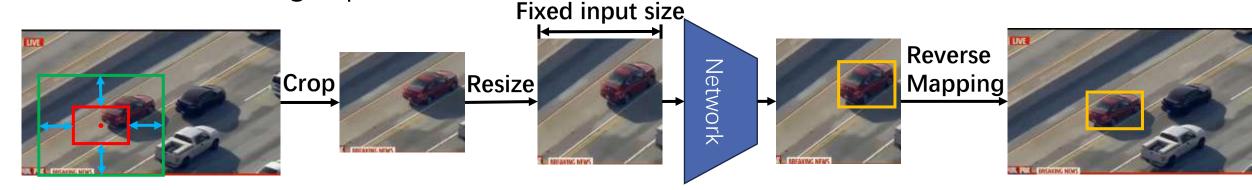


ZoomTrack: Target-aware Non-uniform Resizing for Efficient Visual Tracking

Yutong Kou \cdot Jin Gao \cdot Bing Li \cdot Gang Wang \cdot Weiming Hu \cdot Yizheng Wang \cdot Liang Li

Institute of Automation, Chinese Academy of Sciences

Beijing Institute of Basic Medical Sciences People AI


Background and Motivations

NEURAL INFORMATIC

ROCESSING SYSTEMS

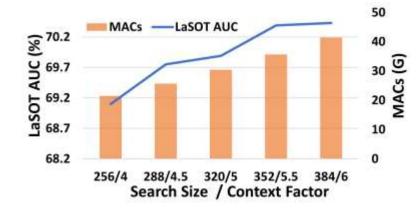
• Visual Tracking Pipeline

Last frame prediction

- Context Region - Crop Region

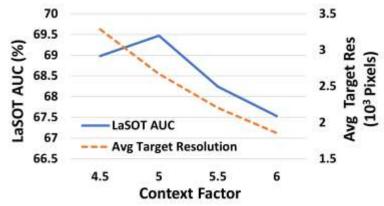
Current frame prediction

Larger input size leads to better accuracy and longer latency


Tracker	Year	Input Size	LaSOT AUC	Δ AUC	\mathbf{FPS}	Δ FPS
OSTrack-384 OSTrack-256	2022	$\frac{384}{256}$	$71.1\%\ 69.1\%$	+2.0%	$\begin{array}{c} 58 \\ 105 \end{array}$	-44.8%
SwinTrack-B SwinTrack-T	2022	$\frac{384}{256}$	$67.2\% \\ 71.3\%$	+4.1%	$\begin{array}{c} 45\\98\end{array}$	-54.1%
SeqTrack-B384 SeqTrack-B256	2023	$384 \\ 256$	$71.5\%\ 69.9\%$	+1.6%	$\frac{15}{40}$	-62.5%

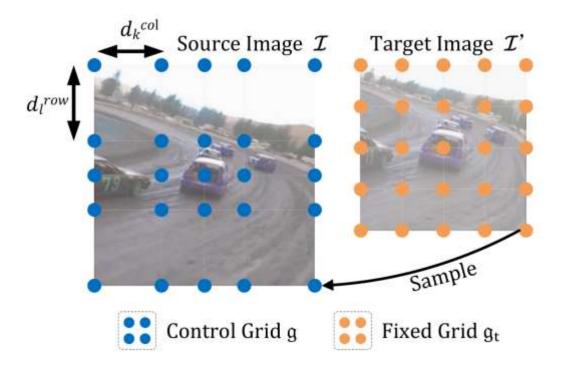
Can we narrow this accuracy gap without sacrificing too much speed?

2023/11/13


Why larger input size improves accuracy?

Larger visual field improves accuracy when target resolution is sufficiently large at the cost of larger input size

How to simultaneously have large visual field and large target resolution under a smaller input size?



The improvement brought by increased visual field is wiped out by decreased target resolution, when fixing a small input size

Non-uniform resizing for visual tracking

By sampling uniformly distributed pixels at nonuniformly distributed locations, the search area of current frame is non-uniformly resized. The nonuniformly resizing is controlled by a non-uniform control grid \mathfrak{g} .

• QP-based control grid g generation

 $\underset{d_l^{row}, \ d_k^{col}}{\text{minimize}} \quad E = E_{zoom} + \lambda E_{rigid}$

subject to

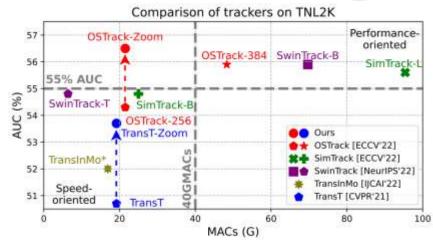
$$\sum_{l=1}^m d_l^{row} = H, \ \sum_{k=1}^n d_k^{col} = W$$

• $S_{k,l}$: importance score, higher at location where the target is more likely to appear, G(x,y) is a Gaussian function

$$S_{k,l} = G\left(\left(k + \frac{1}{2}\right) \times \frac{W}{n}, \left(l + \frac{1}{2}\right) \times \frac{H}{m}\right) + \epsilon$$

- $E_{zoom}: \text{ Zoom the target region by } \gamma$ $E_{zoom} = \sum_{l=1}^{m} \sum_{k=1}^{n} S_{k,l}^{2} \left(\left(d_{l}^{row} \frac{1}{\gamma} \frac{H}{m} \right)^{2} + \left(d_{k}^{col} \frac{1}{\gamma} \frac{W}{n} \right)^{2} \right)$
- *E_{rigid}*: Avoid extreme deformation

$$E_{rigid} = \sum_{l=1}^{m} \sum_{k=1}^{n} S_{k,l}^2 \left(\frac{m}{H} d_l^{row} - \frac{n}{W} d_k^{col} \right)^2$$

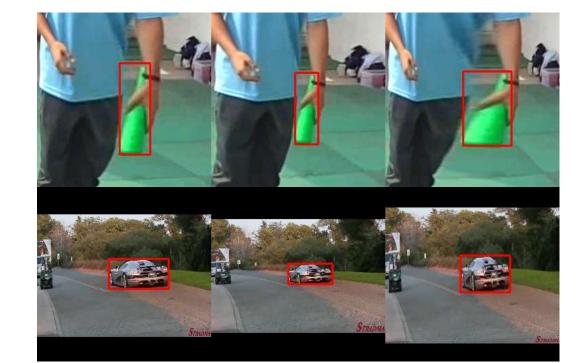

$$\underset{\text{PROCESSING SYSTEMS}}{\overset{\text{NEURAL INFORMATION}}{\overset{\text{NEURAL INFORMATION}}}}}$$

Results

	Tracker	Size	GOT-10k[13]		LaSOT[11]		LaSOT _{ext} [10]		TNL2K[23]		TrackingNet[18]		MACs (G)	FPS	
			AO	SR _{0.5}	SR _{0.75}	AUC	Р	AUC	р	AUC	Р	SUC	Р		1000
Baseline &Ours	OSTrack-Zoom	256	73.5	83.6	70.0	70.2	76.2	50.5	57.4	56.5	57.3	83.2	82.2	21.5	100
	OSTrack-256[26]	256	71.0	80.4	68.2	69.1	75.2	47.4	53.3	54.3	- <u>-</u>	83.1	82.0	21.5	119
	TransT-Zoom	255	67.5	77.6	61.3	67.1	71.6	46.8	52.9	53.7	62.3	81.8	80.2	19.2	45
	TransT[8]	255	67.1	76.8	60.9	64.9	69.0	44.8	52.5	50.7	51.7	81.4	80.3	19.2	48
Speed-oriented	SwinTrack-T[15]	224	71.3	81.9	64.5	67.2	70.8	47.6	53.9	53.0	53.2	81.1	78.4	6.4	98
	SimTrack-B[7]	224	68.6	78.9	62.4	69.3		-	+	54.8	53.8	82.3		25.0	40
	MixFormer-22k[9]	320	70.7	80.0	67.8	69.2	74.7	-	-	-	-	83.1	81.6	23.0	25
	ToMP-101[17]	288	-	(.	.	68.5	73.5	45.9	53	-		81.5	78.9	-	20
	TransInMo*[12]	255	-	-		65.7	70.7	-	20 L	52.0	52.7	81.7	-	16.9	34
	Stark-ST101[24]	320	68.8	78.1	64.1	67.1	-		÷	-	-	82.0	+	28.0	32
	AutoMatch[27]	255	65.2	76.6	54.3	58.3	59.9	37.6	43.0	47.2	43.5	76.0	72.6		50
	DiMP[4]	288	61.1	71.7	49.2	56.9	56.7	39.2	45.1	44.7	43.4	74,0	68.7	5.4	40
	SiamRPN++[14]	255	51.7	61.6	32.5	49.6	49.1	34.0	39.6	41.3	41.2	73.3	69.4	7.8	35
Performance -oriented	OSTrack-384[26]	384	73.7	83.2	70.8	71.1	77.6	50.5	57.6	55.9		83.9	83.2	48.3	61
	SwinTrack-B[15]	384	72.4	80.5	67.8	71.3	76.5	49.1	55.6	55.9	57.1	84.0	82.8	69.7	45
	SimTrack-L[7]	224	69.8	78.8	66.0	70.5	-	-	•	55.6	55.7	83.4	-	95.4	-
	MixFormer-L[9]	320	-			70.1	76.3	-	÷.,	-	-	83.9	83.1	127.8	18

- Consistent improvements over two baselines on multiple large-scale tracking datasets
- Narrowed the accuracy gap between speed/ accuracy oriented trackers
- Causing little computational overhead (1.58 ms & 1.28M MACs)

• Outperforms SOTA method on TNL2K while reduces more than 50% of computation


#	Non-unif	orm resizing	OSTra	ack[33]	TransT[8]			
	Testing	Training	LaSOT[11]	TNL2K[30]	LaSOT[11]	TNL2K[30]		
1			69.1	54.3	64.9	50.7		
2	~		69.1	55.9	66.3	53.6		
3	~	~	70.2	56.5	67.1	53.7		

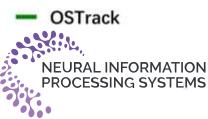
• Improve off-the-shelf models without training

Ours

2023/11/13

Uniform Resizing

FOVEA


- Compared with uniform resizing, we have larger target resolution
- Compared other non-uniform resizing method (FOVEA), we have less deformation and scale change

Faster re-detection

Fewer target lost

Conclusion

Paper

An efficient non-uniform resizing method for visual tracking

- Non-uniformly resize the cropped search area to have a smaller input size while the resolution of the area where the target is more likely to appear is higher, vice versa.
- Bridge the gap between speed-oriented and performance-oriented trackers with negligible computation
- Push forward the Pareto front of MACs and AUC trade-off

Code

