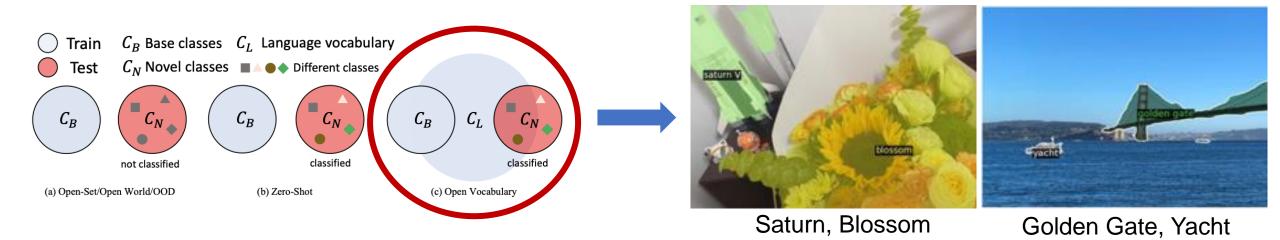


Uncovering Prototypical Knowledge for Weakly Open-Vocabulary Semantic Segmentation

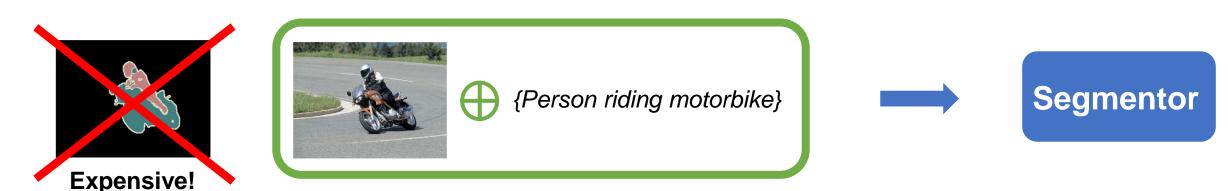
Fei Zhang, Tianfei Zhou, Boyang Li, Hao He, Chaofan Ma, Tianjiao Zhang, Jiangchao Yao, Ya Zhang, Yanfeng Wang

Weakly Open-Vocabulary Semantic Segmentation

OVSS targets on the Segmentor that can segment the novel class from Large Language Knowledge.



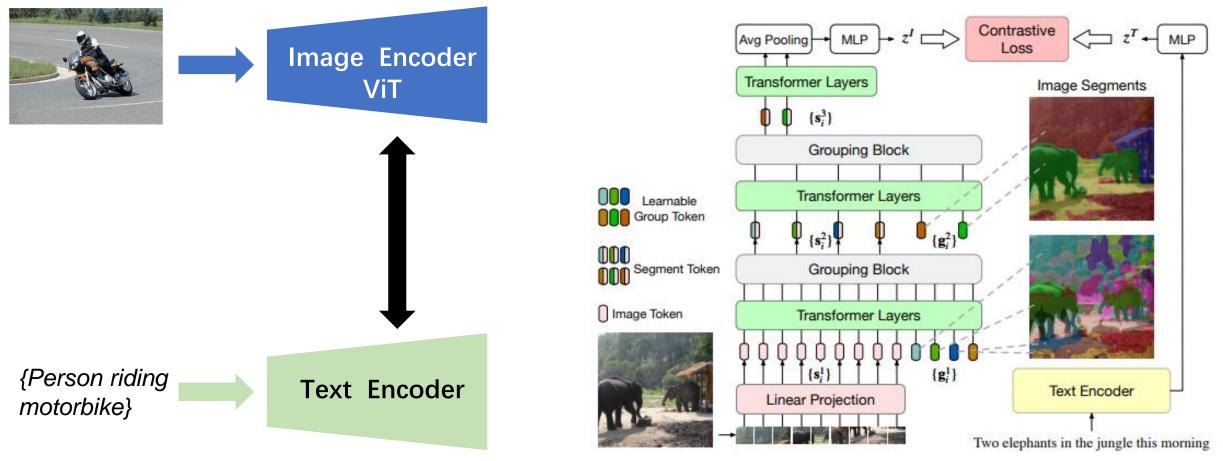
> WOVSS focuses on training a OV Segmentor with only image-text pairs.



How to address WOVSS?

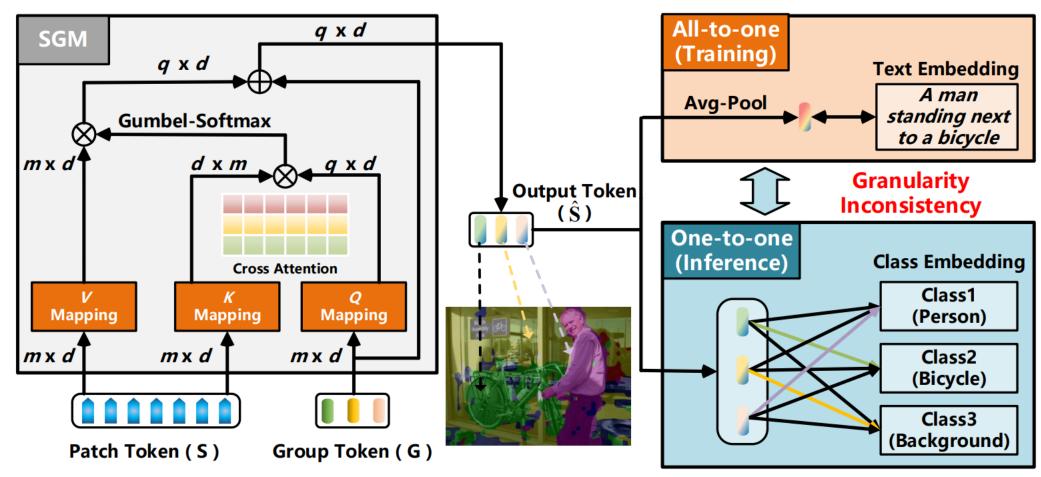
> Image-Text Alignment is the baseline.

Semantic Grouping Module (SGM) enables segmenting ability.



GroupViT, CVPR'22

Granularity Inconsistency: all-to-one (training) vs one-to-one (inference).



Group tokens/centroids lack explicit supervision

Finding the proper supervision

(Our Method)

> Prototypical knowledge -> Compactness and Richness.

Under/Over-segmenting Region Bus **Group Token** Bird (Baseline Method) O Informative Expansion/Uninformative Reduction Prototypical Richness Compactness Knowledge **Group Token**

> NPR -> *Generating* the supervision and *Regularizing* the group token.

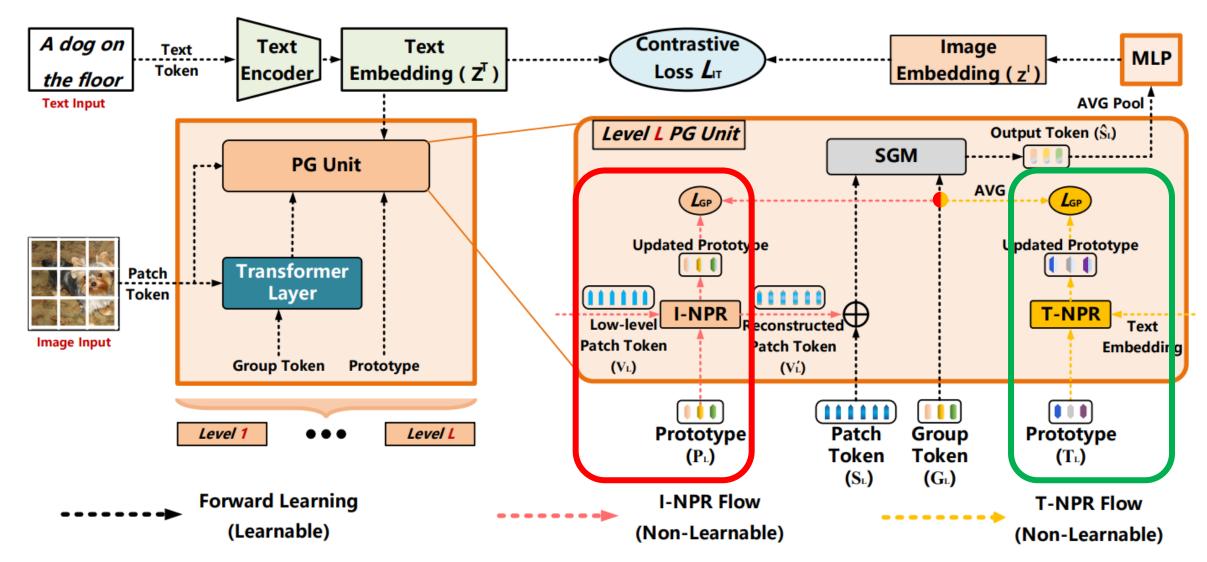
$$y_{ij} = \frac{\mathcal{Z}(\boldsymbol{v}_j | \boldsymbol{p}_i)}{\sum_{i=1}^q \mathcal{Z}(\boldsymbol{v}_j | \boldsymbol{p}_i)} = \frac{\exp(\boldsymbol{p}_i \boldsymbol{v}_j^\top)}{\sum_{i=1}^q \exp(\boldsymbol{p}_i \boldsymbol{v}_j^\top)} \qquad \qquad \boldsymbol{p}_i = \frac{\sum_{j=1}^m y_{ij} \boldsymbol{v}_j}{\sum_{j=1}^m y_{ij}}$$

Algorithm 1 Non-learnable Prototypical Regularization (NPR)

- **Require:** Group tokens $G \in \mathbb{R}^{q \times d}$, prototypes $P \in \mathbb{R}^{q \times d}$, prototypical source features $V \in \mathbb{R}^{m \times d}$, iterations T (T = 10 in our setting), selecting threshold ϕ .
 - 1: ▷ Prototype Generation
 - 2: for iteration t = 1 to T do
 - 3: (E-step) Calculate the probability of V belonging to P in Eq. (1)
 - 4: (M-step) Update the prototypes \hat{P} by using Eq. (2)
 - 5: end for
 - 6: ▷ Prototype Supervision
 - 7: Generate the matched prototypes $P^{\rm h}$ by using the Hungarian matching between P and G
 - 8: Select the matched pairs (P^{h} , G) whose similarity scores are beyond ϕ
 - 9: Regularize the selected G with the matched $P^{\rm h}$ by using $\mathcal{L}_{\rm PG}$ in Eq. (3)

$$\mathcal{L}_{\mathrm{PG}}(\boldsymbol{G}, \boldsymbol{P}^{\mathrm{h}}) = -\frac{1}{q} \sum_{i=1}^{q} \left(\log \frac{\exp(\mathcal{S}(\boldsymbol{g}_{i}, \boldsymbol{p}_{i}^{\mathrm{h}})/\tau)}{\sum_{j=1}^{q} \exp(\mathcal{S}(\boldsymbol{g}_{i}, \boldsymbol{p}_{j}^{\mathrm{h}})/\tau)} + \log \frac{\exp(\mathcal{S}(\boldsymbol{p}_{i}^{\mathrm{h}}, \boldsymbol{g}_{i})/\tau)}{\sum_{j=1}^{q} \exp(\mathcal{S}(\boldsymbol{p}_{i}^{\mathrm{h}}, \boldsymbol{g}_{j})/\tau)} \right)$$

PGSeg -> Instantiate NPR with multi-modal prototypical knowledge.



Experiments

Backbone: ViT-S

Training Dataset: CC12M/RedCaps12M

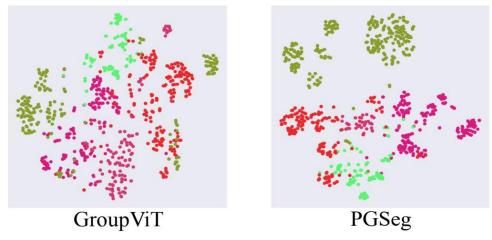
Evaluation Dataset: VOC12/Context/COCO

Methods	Training Data (volume)	Pre-trained Models	VOC12	Context	COCO
RECO [45]	CC400M [39] + ImageNet1M (401M)	CLIP [39] + MOCO [21]	25.1	19.9	15.7
MaskCLIP [55]	CC400M [39] (400M)	CLIP [39]	29.3	21.1	15.5
ViL-Seg [33]	CC12M [7] (12M)	×	34.4	16.3	16.4
MaskCLIP [55]	CC400M [39] + <i>ST</i> (400M)	CLIP [39]	38.8	23.6	20.6
GroupViT [50]	CC12M [7] (12M)	×	41.1	18.2	18.4
OVSegmentor [51]	CC12M [7] + ImageNet1M [11] (13M)	BERT [13] + DINO [5]	44.5	18.3	19.0
PGSeg	CC12M [7] (12M)	×	<u>49.0</u>	20.6	<u>22.9</u>
GroupViT [50]	CC12M [7] + RedCaps12M [12] (24M)	×	50.8	23.6	27.5
SegCLIP [35]	CC403M [39, 7] + COCO400k [32] (403.4M)	CLIP [39]	52.6	24.7	26.5
GroupViT [50]	CC12M [7] + YFCC14M [46] (26M)	×	52.3	22.4	20.9
ViewCO [41]	CC12M [7] + YFCC14M [46] (26M)	×	52.4	23.0	23.5
PGSeg	CC12M [7] + RedCaps12M [12] (24M)	× ×	<u>53.2</u>	23.8	<u>28.7</u>

PGSeg achieves SOTA performance.

Experiments

Compactness: More *compact* clusters.



> Richness: *Richer* feature representation.



\succ Visualized results on PASCAL VOC12.



Input

PGSeg

Output

> PGSeg (24 Million Image-text pair) v.s. SAM (11 Billion Images+1 Billion Mask).

Comparable object-level segmentation with only image-text supervision.

Thanks for Watching!