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Brief introduction of Federated Learning

Federated Learning (FL) (McMahan et al., 2017) is a popular distributed machine
learning paradigm for joint training across multiple clients.

The basic FL problem is to minimize a global objective function:

min
x∈Rd

{
F (x) :=

1

M

M∑
m=1

(Fm(x) := Eξ∼Dm [fm(x; ξ)])

}
,

where Fm, fm and Dm denote the local objective function, the loss function and the
local dataset of client m (m ∈ [M ]), respectively. In particular, when Dm has finite
data samples {ξim : i ∈ [|Dm|]}, the local objective function can also be written as

Fm(x) = 1
|Dm|

∑|Dm|
i=1 fm(x; ξim).



Motivation

There are two categories of methods in FL:

i) parallel FL (PFL), where models are trained in a parallel manner across clients
with synchronization at intervals, e.g., Federated Averaging (FedAvg) (McMahan
et al., 2017);

ii) sequential FL (SFL), where models are trained in a sequential manner across
clients, e.g., Cyclic Weight Transfer (CWT) (Chang et al., 2018).

Convergence theory is critical for analyzing the learning performance of algorithms on
heterogeneous data in FL. So far, there are numerous works to analyze the
convergence of PFL (Khaled et al., 2020; Koloskova et al., 2020; Li et al., 2019) on
heterogeneous data. However, the convergence theory of SFL on heterogeneous data
has not been well investigated in the literature, with only limited preliminary empirical
studies Gao et al. (2020, 2021).



Setup

Algorithm 1: Sequential FL

1 for training round r = 0, 1, . . . , R− 1 do
2 Sample a permutation

π1, π2, . . . , πM of {1, 2, . . . ,M}
3 for m = 1, 2, . . . ,M in sequence do

4 x
(r)
m,0 =

{
x(r) , m = 1

x
(r)
m−1,K , m > 1

5 for local step k = 0, . . . ,K − 1
do

6 x
(r)
m,k+1 = x

(r)
m,k − ηg

(r)
πm,k

7 Global model: x(r+1) = x
(r)
M,K

Algorithm 2: Parallel FL

1 for training round r = 0, 1, . . . , R− 1 do
2 for m = 1, 2, . . . ,M in parallel do

3 x
(r)
m,0 = x(r)

4 for local step k = 0, . . . ,K − 1
do

5 x
(r)
m,k+1 = x

(r)
m,k − ηg

(r)
m,k

6 Global model:

x(r+1) =
1

M

M∑
m=1

x
(r)
m,K



Contribution

The main contributions are: i) we establish the convergence guarantees of SFL and
compare it against PFL.

▶ We derive convergence guarantees of SFL for strongly convex, general convex and
non-convex objectives on heterogeneous data.

▶ We compare the convergence guarantees of PFL and SFL, and find a
counterintuitive comparison result that the guarantee of SFL is better than that
of PFL in terms of training rounds on heterogeneous data.
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Assumptions

We consider three typical cases for convergence theory, i.e., the strongly convex case, the
general convex case and the non-convex case.

[Assumption 1] Each local objective function Fm is L-smooth, m ∈ {1, 2, . . . ,M}, i.e., there
exists a constant L > 0 such that ∥∇Fm(x)−∇Fm(y)∥ ≤ L ∥x− y∥ for all x,y ∈ Rd.

[Assumption 2: stochasticity] The variance of the stochastic gradient at each client is bounded:

Eξ∼Dm

[
∥∇fm(x; ξ)−∇Fm(x)∥2

∣∣∣x] ≤ σ2, ∀m ∈ {1, 2, . . . ,M} (1)

[Assumption 3a: heterogeneity] There exist constants β2 and ζ2 such that
1
M

∑M
m=1 ∥∇Fm(x)−∇F (x)∥2 ≤ β2 ∥∇F (x)∥2 + ζ2 (2)

[Assumption 3b: heterogeneity] There exists one constant ζ2∗ such that
1
M

∑M
m=1 ∥∇Fm(x∗)∥2 = ζ2∗ (3)

where x∗ ∈ argminx∈Rd F (x) is one global minimizer.



Theorem 1
For SFL (Algorithm 1), there exist a constant effective learning rate η̃ := MKη and weights wr, such
that x̄(R) := 1

WR

∑R
r=0 wrx

(r) (WR =
∑R

r=0 wr) satisfies the following upper bounds:

Strongly convex: Under Assumptions 1, 2, 3b, there exist a constant effective learning rate 1
µR

≤ η̃ ≤
1
6L

and weights wr = (1− µη̃
2
)−(r+1), such that it holds that

E
[
F (x̄(R))− F (x∗)

]
≤ 9

2
µD2 exp

(
−µη̃R

2

)
+

12η̃σ2

MK
+

18Lη̃2σ2

MK
+

18Lη̃2ζ2∗
M

(4)

General convex: Under Assumptions 1, 2, 3b, there exist a constant effective learning rate η̃ ≤ 1
6L

and
weights wr = 1, such that it holds that

E
[
F (x̄(R))− F (x∗)

]
≤ 3D2

η̃R
+

12η̃σ2

MK
+

18Lη̃2σ2

MK
+

18Lη̃2ζ2∗
M

(5)

Non-convex: Under Assumptions 1, 2, 3a, there exist a constant effective learning rate η̃ ≤ 1
6L(β+1)

and weights wr = 1, such that it holds that

min
0≤r≤R

E
[
∥∇F (x(r))∥2

]
≤ 3A

η̃R
+

3Lη̃σ2

MK
+

27L2η̃2σ2

8MK
+

27L2η̃2ζ2

8M
(6)

where D :=
∥∥∥x(0) − x∗

∥∥∥ for the convex cases and A := F (x(0))− F ∗ for the non-convex case.



Corollary 1
Applying the results of Theorem 1, we can obtain the convergence bounds for SFL as follows:

Strongly convex: Under Assumptions 1, 2, 3b, there exist a constant effective learning rate 1
µR

≤ η̃ ≤
1
6L

and weights wr = (1− µη̃
2
)−(r+1), such that it holds that

E
[
F (x̄(R))− F (x∗)

]
= Õ

(
σ2

µMKR
+

Lσ2

µ2MKR2
+

Lζ2∗
µ2MR2

+ µD2 exp

(
− µR

12L

))
(7)

General convex: Under Assumptions 1, 2, 3b, there exist a constant effective learning rate η̃ ≤ 1
6L

and
weights wr = 1, such that it holds that

E
[
F (x̄(R))− F (x∗)

]
= O

(
σD√
MKR

+

(
Lσ2D4

)1/3
(MK)1/3R2/3

+

(
Lζ2∗D

4
)1/3

M1/3R2/3
+

LD2

R

)
(8)

Non-convex: Under Assumptions 1, 2, 3a, there exist a constant effective learning rate η̃ ≤ 1
6L(β+1)

and weights wr = 1, such that it holds that

min
0≤r≤R

E
[
∥∇F (x(r))∥2

]
= O

((
Lσ2A

)1/2
√
MKR

+

(
L2σ2A2

)1/3
(MK)1/3R2/3

+

(
L2ζ2A2

)1/3
M1/3R2/3

+
LβA

R

)
(9)

where O omits absolute constants, Õ omits absolute constants and polylogarithmic factors,

D :=
∥∥∥x(0) − x∗

∥∥∥ for the convex cases and A := F (x(0))− F ∗ for the non-convex case.
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PFL vs. SFL on heterogeneous data

Table 1: Upper bounds in the strongly convex case with absolute constants and polylogarithmic
factors omitted. All results are for heterogeneous settings.

Method Bound (D =
∥∥x(0) − x∗

∥∥)
SGD (Stich, 2019) σ2

µMKR + LD2 exp
(
−µR

L

)
(1)

PFL
(Karimireddy et al., 2020) σ2

µMKR + Lσ2

µ2KR2 + Lζ2

µ2R2 + µD2 exp
(
−µR

L

)
(2)

(Koloskova et al., 2020) σ2
∗

µMKR + Lσ2
∗

µ2KR2 + Lζ2∗
µ2R2 + LKD2 exp

(
−µR

L

)
(3)

Theorem 2 σ2

µMKR + Lσ2

µ2KR2 + Lζ2∗
µ2R2 + µD2 exp

(
−µR

L

)
SFL

Theorem 1 σ2

µMKR + Lσ2

µ2MKR2 + Lζ2∗
µ2MR2 + µD2 exp

(
−µR

L

)
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Experiments on quadratic functions

To further catch the heterogeneity, in addition to Assumption 3b, we also use bounded
Hessian heterogeneity in Karimireddy et al. (2020):

max
m

∥∥∇2Fm(x)−∇2F (x)
∥∥ ≤ δ .

Choosing larger values of ζ∗ and δ means higher heterogeneity.

Table 2: Settings of simulated experiments. Each group has two local objectives (i.e., M = 2)
and shares the same global objective. The heterogeneity increases from Group 1 to Group 4.

Group 1 Group 2 Group 3 Group 4

Settings

{
F1(x) =

1
2x

2

F2(x) =
1
2x

2

{
F1(x) =

1
2x

2 + x

F2(x) =
1
2x

2 − x

{
F1(x) =

2
3x

2 + x

F2(x) =
1
3x

2 − x

{
F1(x) = x2 + x

F2(x) = −x

ζ∗, δ ζ∗ = 0, δ = 0 ζ∗ = 1, δ = 0 ζ∗ = 1, δ = 1
3 ζ∗ = 1, δ = 1



Experiments on quadratic functions
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Figure 1: Simulations on quadratic functions. It displays the experimental results from Group 1
to Group 4 in Table 2 from left to right. Shaded areas show the min-max values.

This in fact tells us that the comparison between PFL and SFL can be associated with
data heterogeneity:

▶ When ζ∗ = 0 and δ = 0, SFL outperforms PFL (Group 1).

▶ When ζ∗ = 1 and δ = 0, the heterogeneity has no bad effect on the performance
of PFL while hurts that of SFL significantly (Group 2).

▶ When the heterogeneity continues to increase to δ > 0, SFL outperforms PFL
with a faster rate and better result (Groups 3 and 4).



Experiments on quadratic functions

Intuitively, PFL updates the global model less frequently with more accurate gradients
(with the global aggregation). In contrast, SFL updates the global model more
frequently with less accurate gradients.

In homogeneous (gradients of both are accurate) and extremely heterogeneous settings
(gradients of both are inaccurate), the benefits of frequent updates become dominant,
and thus SFL outperforms PFL. In moderately heterogeneous settings, it’s the opposite.



Experiments on real datasets
SFL outperforms PFL on extremely heterogeneous data.

Table 3: Test accuracy results in cross-device settings. We call C = 1 (where each client owns
samples from one class) and C = 2 (where each client owns samples from two classes) as
extremely heterogeneous data and moderately heterogeneous data, respectively.

Setup C = 1 C = 2

Dataset Model Method K = 5 K = 20 K = 50 K = 5 K = 20 K = 50

CIFAR-10
VGG-9

PFL 67.61±4.02 62.00±4.90 45.77±5.91 78.42±1.47 78.88±1.35 78.01±1.50

SFL 78.43±2.46 72.61±3.27 68.86±4.19 82.56±1.68 82.18±1.97 79.67±2.30

ResNet-18
PFL 52.12±6.09 44.58±4.79 34.29±4.99 80.27±1.52 82.27±1.55 79.88±2.18

SFL 83.44±1.83 76.97±4.82 68.91±4.29 87.16±1.34 84.90±3.53 79.38±4.49

CINIC-10
VGG-9

PFL 52.61±3.19 45.98±4.29 34.08±4.77 55.84±0.55 53.41±0.62 52.04±0.79

SFL 59.11±0.74 58.71±0.98 56.67±1.18 60.82±0.61 59.78±0.79 56.87±1.42

ResNet-18
PFL 41.12±4.28 33.19±4.73 24.71±4.89 57.70±1.04 55.59±1.32 46.99±1.73

SFL 60.36±1.37 51.84±2.15 44.95±2.97 64.17±1.06 58.05±2.54 56.28±2.32
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Future directions

In this paper, we have derived the convergence guarantees of SFL for strongly convex,
general convex and non-convex objectives on heterogeneous data. Furthermore, we
have compared SFL against PFL, showing that the guarantee of SFL is better than
PFL on heterogeneous data. Experimental results validate that SFL outperforms PFL
on extremely heterogeneous data in cross-device settings.

Future directions include:

i) lower bounds for SFL (this work focuses on the upper bounds of SFL),

ii) other potential factors that may affect the performance of PFL and SFL (this
work focuses on data heterogeneity) and

iii) new algorithms to facilitate our findings (no new algorithm in this work).

Thanks for your attention!!!
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