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Motivation

Federated Learning (FL) challenges in real-world applications: 

v Limited applicability in environments lacking network infrastructures such as robotics and ad-
hoc networks
Ø Difficulty in maintaining consistent and reliable connections
Ø Change in conditions in dynamic environments with rapidly evolving topologies and ongoing 

adaptations 
Ø Limited and constrained communication between central server and clients 

v Difference in clients’ data distribution and tasks
Ø Clients’ data distribution is non-IID (non-independent and identically distributed) 
Ø Clients perform different tasks 
Ø Lack of generalization of the global model => Model discrepancy
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Contribution

v To address these FL challenges, we propose a novel and unique FL framework called Random 
Walk Stochastic Alternating Direction Method of Multipliers (RWSADMM):

Ø Server moves between clients based on a Random Walk (RW) algorithm

Ø Presence of data heterogeneity

Ø A dynamic reachability graph among distributed clients

Ø A movable vehicle as the central server
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Framework Description

v Clients rely on short-range transmission devices to interact with the movable server

Ø Communication is possible only within the communication range 

Ø Whenever the server arrives in the communication range of Client 𝑖, it and its neighbors participate 
in the computation round 

v Server navigates using a non-homogeneous Markov Chain Random Walk method 

v Probabilistic approach allows for a more effective server
movement and navigation

v Transition matrix 𝑃(𝑘) at time 𝑘: 

𝑃 𝑘 !,# = Pr{𝑖$%& = 𝑖|𝑖$ = 𝑗} ∈ [0, 1]
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Framework Formulation

v Objective: Minimizing the average loss while ensuring local proximity among clients’ local models

v Graph: Dynamic connected graph 𝐺 = (𝑉, 𝐸) with 𝑛 clients and 𝑚 edges.

v 𝑉 = {𝑣&, 𝑣', … , 𝑣(} is the set of 𝑛 clients 
v 𝐸 is the set of 𝑚 edges, which are created if within the communication range.

min
𝐱!:#∈+$

&
(
∑!,&( 𝑓! 𝐱! 					

s.t. 𝐱! − 𝐱# ≤ 𝟏⨂𝛜!,	 ∀𝑖 ∈ {1, … , 𝑛}
v Parameters: 

Ø 𝑥!:	local model parameter stored in client 𝑖
Ø 𝑓!(𝑥!):	local loss function for client 𝑖, potentially non-convex
Ø 𝛜!: Non-consensus relaxation between local neighboring clients, replacing model 

consensus requirement in typical FL frameworks
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Framework Formulation

v By introducing local proximity model 𝑦! stored by the server, the problem is rewritten as:

min
𝐱!:#∈+$

1
𝑛
K

(

!,&
𝑓! 𝑥!

s.t. 𝟏⨂𝐲! − 𝐗-(!) ≤ 𝟏⨂𝛜!/2,	 ∀𝑖 ∈ {1, … , 𝑛}

v Parameters: 
Ø 𝒚!:	local proximity of 𝑁 𝑖 	
Ø 𝐗"(!): Concatenated matrix containing models of client set 𝑁(𝑖)’s
Ø 𝑁 𝑖 : Vertex set containing client 𝑖	and its neighbors
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Framework Formulation

v By introducing local proximity model 𝑦! stored by the server, the problem is rewritten as:

v Parameters:
Ø 𝛽: Barrier parameter
Ø 𝐙! ∈ 𝑹%!×': dual variable
Ø 𝛆!= 𝛜!/2

min
𝐱!:#∈+$

1
𝑛
K

(

!,&
𝑓! 𝑥!

s.t. 𝟏⨂𝐲! − 𝐗-(!) ≤ 𝟏⨂𝛜!/2,	 ∀𝑖 ∈ {1, … , 𝑛}

Constrained 
problem

Augmented Lagrangian Function 𝐿(

𝐿0 𝐲&:(, 𝐗, 𝐙&:( = &
(
𝐹 𝐗 + ∑!,&( 𝑍!, 𝟏⨂𝐲! − 𝐗-(!) − 𝛆! 	 +

0
'
∑!,&( 𝟏⨂𝐲! − 𝐗-(!) − 𝛆! 2

'
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Framework Formulation

v RWSADMM is derived by integrating RW and stochastic inexact approximation techniques into 
ADMM
Ø At iteration 𝑘, server approaches client 𝑖! using RW algorithm
Ø The clients 𝑁(𝑖!) participate in the federated update 
Ø The corresponding group of variables, 𝑥"" , 𝑦"" , 𝑧"" are updated in a stochastic way by deriving the 

solver of each subproblem 

Ø Then the Lagrangian multiplier is updated

Ø 𝑦𝒊"
$ , 𝑥𝒊" , 𝑧𝒊"

$ : local parameters stored in client 𝑖! at the 𝑘 − 1 𝑡ℎ iteration

𝐱!% = argmin
𝐱&%

𝐿0 𝐲!%
3 , 𝐱!% , 𝐳!%

3

𝐲!% = argmin
𝒚&%

𝐿0 𝒚!% , 𝑿-(!%), 𝐳-(!%)
3

𝐳!% = 𝐳!%
3 + 𝛽( 𝒚!% − 𝐱!% − 𝛆!%)
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Framework Formulation

v X-update:
Ø Driving the solver updating X variable 

Ø Signum sgn . function extracts the sign of a vector and 𝐭'!
( = 𝐲'!

( − 𝐱'!
(

min
𝐱!"

𝑓!" 𝐱!" + 𝐳!"
* , 𝒚!"

* − 𝐱!" − 𝛆!" + (
+

𝐲!"
* − 𝐱!" − 𝛆!" ,

+

Substituted by first order stochastic approximation 

min
𝐱!"

𝑔!" 𝐱!"
* , 𝜉!" 𝐱!" − 𝐱!"

* + 𝐳!"
* , 𝐲!"

* − 𝐱!" − 𝛆!" + (
+

𝐲!"
* − 𝐱!" − 𝛆!" ,

+

𝐱"" = 𝐲""
$ + %

&
 𝐳""
$ ⊙sgn 𝐭$ − %

&
 sgn 𝐭$ 	 ⊙ 𝛆"" + 𝑔"" 𝐱""

$ , 𝜉""
							= 𝐲""

$ + %
&

 sgn 𝐭$ ⊙ 𝐳""
$ − 𝛆"" − 𝑔"" 𝐱""

$ , 𝜉""

The stochastic approximation tremendously reduces memory 
consumption and computational costs in each computation round

One of a few samples 
randomly selected by 

client 𝑖)
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Framework Formulation

v Y-update:
Ø Driving the solver updating Y variable 

Ø 𝒕'! = 𝐲'!
( − 𝐱'!

min
𝒚!"

𝒁𝑵(!")
* , 𝟏⨂𝐲!" − 𝐗"(!") − 𝛆!" + (

+
𝟏⨂𝐲!" − 𝐗"(!") − 𝟏⨂𝛆!" ,

+

Substituting 𝐲C'through mathematical induction significantly reduces 
the communication costs in each computation round

𝐲!" =
1
𝑛!"

G
/∈"(!")

𝐱!" −
𝒛!"
𝛽 + 𝛆!" ⊙ sgn 𝐭!"

𝐲!" = 𝐲!"
* + 1

%!"
𝐱!" −

𝒛!"
(
+ 𝛆!" ⊙ sgn 𝐭!" − 𝐱!"

* −
𝐳!"
#

(
+ 𝛆!" ⊙ sgn 𝐭!"

Reducing the communication cost from 𝑂 𝑛  to 𝑂 1  
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Framework Formulation

v Z-update:
Ø Driving the solver updating Z variable 

Ø Strictly updated following standard ADMM scheme
Ø 𝜅 coeficient is decayed after each computation round for achieving better convergence

𝐳!% = 𝐳!%
3 + 𝜅𝛽( 𝟏⨂𝐲!% − 𝐗-(!%) − 𝛆!%)
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Algorithm

v Effectiveness
Ø Convergent

Ø Dynamic graph
Ø Heterogeneous data distribution

v Efficiency
Ø Save memory cost
Ø Save communication cost
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Theoretical Guarantees

v To prove the convergence, a Lyapunov function is defined:

v (𝐿"
# )#$% is non-decreasing and is lower bounded by infimum of 𝑓 (𝑖𝑛𝑓(𝑓))

𝐿(4 = 	𝐿( (𝐲4 , 𝐗4; 𝐙𝒌)

Convergence Theorem: Suppose the following two 
assumptions hold:

1. The objective function 𝑓! 𝑥! 	is coercive and L-
smooth 

2. Random Walk forms an irreducible and 
aperiodic Markov Chain with mixing time 𝜏 𝛿  . 
(mixing time 𝜏 𝛿  (given 𝛿>0) is the smallest 
integer s.t. 𝑃 𝑘 "($)

!& − 𝜋& ≤ 𝛿𝜋∗).

For 𝛽 > 2𝐿( + 𝐿 + 2 , it holds that any limit point 
(𝐲∗, 𝐗∗, 𝐙∗) of the sequence (𝐲), 𝐗), 𝐙)) generated by 
RWSADMM satisfies that (𝐲∗, 𝐗∗, 𝐙∗) is a stationary 
point with probability 1, that is,

𝑃𝑟 0 ∈
1
𝑛B
!*+

,

∇𝑓! = 1

Convergence Rate Theorem: (Sublinear convergence 
rate) With assumptions of convergence theorem and 
𝛽 > 2𝐿( + 𝐿 + 2 , given local models initialized as 
𝛻𝑓! 𝒙!- = 𝛽𝒙!- = 𝒛!- , 𝑖 ∈ {1, … , 𝑛} , there exists a 
subgradient sequence 𝑔. ∈ 𝜕 𝐿/

.  satisfying

where 𝐶 is a constant depending on 𝛽, 𝐿, 𝑛, and 𝜏 𝛿 . 
Hence, a gradient sublinear convergence is proved.

Sublinear convergence rate is comparable with other 
FL frameworks’ convergence rate; while they did not 
consider a dynamic environment. 

In a convex problem, RWSADMM is provable to 
converge with linear convergence rate. 

𝑚𝑖𝑛
.01

𝐸 𝑔. ( ≤
𝐶
𝐾 𝐿/

- − 𝑖𝑛𝑓(𝑓) , ∀𝐾 ≥ 𝜏 𝛿 + 2

Communication Complexity: Using the convergence 
rate theorem, the communication complexity of 
RWSADMM for nonconvex nonsmooth problem is as 
follows. To achieve ergodic gradient deviation 
𝐸2 ≔ 𝑚𝑖𝑛.01 𝐸 𝑔. ( ≤ 𝜔, ∀𝐾 ≥ 𝜏 𝛿 + 2, it is 
sufficient to have

v (*) is achieved by taking 𝐿!"  and 𝑖𝑛𝑓(𝑓) as 
constants and independent of 𝑛 and network 
structure. 𝜆# 𝑷 𝑘 = max{ 𝜆$ 𝑷 𝑘 ∶
𝜆$ 𝑷 𝑘 	≠ 1} (𝜆	𝑎𝑠	𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒). 

v RWSADMM’s communication 𝑂(𝜔3+) for K 
iterations. Per-FedAvg exhibits a higher 
communication complexity 𝑂(𝜔34/(). APFL has 
the communication complexity of 
𝑂(𝜔34/6𝑛34/6), n is total number of clients. 
When n is large, APFL’s communication 
complexity is significantly higher than 
RWSADMM.

𝐶
𝐾

𝐿/
- − 𝑖𝑛𝑓(𝑓) ≤ 𝜔

∗
	𝑂

1
𝜔
.

𝑙𝑛(𝑛

1 − 𝜆( 𝑷 𝑘 2
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Experiments

v Benchmark Datasets: MNIST, Synthetic, and CIFAR10

v Training models: Strongly convex MLR, non-convex MLP, and non-convex CNN

RWSADMM outperforming state-of-the-art FL frameworks with 20 clients for MNIST dataset
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RWSADMM’s (red curve) convergence performance with 20 clients for MNIST dataset

Scalability performance of RWSADMM for 
different number of clients

Experiments
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Conclusion

v Proposed a novel mobile server FL framework called RWSADMM:
Ø Provably convergent with sublinear convergence rate for non-convex settings
Ø Reduced memory and computation costs, due to stochasticity
Ø Outperforming state-of-the-art FL frameworks relative to

• Provably lower communication complexity
• Higher accuracy

v In addition, successfully resolved the challenge of implementing FL in an unreliable network 
environment by:
Ø Reliance on short-range communication of ad-hoc networks with a moving server
Ø Implementing a dynamic environment and network topology 
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