Equivariant Neural Operator Learning with Graphon Convolution

Chaoran Cheng, Jian Peng

NeurIPS23 Spotlight

Department of Computer Science, University of Illinois Urbana-Champaign

Tri-periodic fully three-dimensional analytic solutions for the Navier–Stokes equations. J. Fluid Mech., 2020

Fluid / source, sink

Background *Equivariance*

• Rigid transformation (*rotation and translation*) of the input gives results that transform accordingly.

• Rotation of *continuous functions*:

 $(\mathcal{R}f)(\mathbf{x}):=f\left(R^{-1}\mathbf{x}
ight)$

• Equivariant operator:

 $\mathcal{T}(\mathcal{R}f) = \mathcal{R}(\mathcal{T}f), orall \mathcal{R}$

Discrete case

normal estimation

Previous Work

- Traditional quantum chemical calculations are either slow (ab initio method) or inaccurate (KS-DFT).
- *Voxel-based* regression: Memory consuming
- Coefficient learning: Finite approximation error
- Interpolation network: Lack of long-range interaction
- Neural Operators: Hard to scale up

sources: DeepDFT: Neural Message Passing Network for Accurate Charge Density Prediction, *NeurIPS*, 2020 Harmony: EEG/MEG Linear Inverse Source Reconstruction in the Anatomical Basis of Spherical Harmonics, *PLoS ONE*, 2012

Our Proposed InfGCN

• A combination of coefficient learning nets and interpolation nets

InfGCN *layer*

• Equivariance guaranteed by design

Residual Operator layer

• Graph spectral theoretical interpretation as graphon convolution

InfGCN Layer

• Use tensor product to achieve equivariance (like in TFN)!

$$\mathsf{x}_u \!\! \leftarrow \sum_{v \in \mathcal{N}_u} \sum_{\ell k} w_{\ell k} \sum_{Jm} \!\! \mathsf{r}_{uv} \! \otimes \!\! \mathsf{x}_u$$

Theorem. When interpreted as coefficients for Gaussian-type orbitals (GTOs): $\psi_{n\ell m}(\mathbf{r}) = R_n^{\ell}(r)Y_{\ell}^m(\hat{\mathbf{r}}) = c_{n\ell} \exp(-a_n r^2)r^{\ell}Y_{\ell}^m(\hat{\mathbf{r}})$ TFN will give an SE(3)-equivariant continuous function.

sources: Tensor field networks: Rotation- and translation-equivariant neural networks for 3D point clouds, Arxiv, 18

Residual Operator Layer

- An interpolation-style residual operator layer
- "*Finetune*" the finite approximation error

Graph Spectral Theory

• Continuous MPNN: *Infinitely-many, continuously-indexable nodes*

$$\mathcal{T}_W f(\mathbf{x}) := \int_\mathcal{D} \overline{W(\mathbf{x},\mathbf{y})} f(\mathbf{y}) d\mathbf{y}$$

Proposition:

• Basis coefficients are *graphon spectra*.

0

- Transformation on the coefficients is *graphon convolution*.
- Graphon (graph limit, graph function) slightly generalized

$$egin{aligned} & ext{Symmetric, square-integrabl} \ & W: \mathcal{D} imes \mathcal{D} o [0,1], \ & \int_{\mathcal{D}^2} |W(\mathbf{x},\mathbf{y})|^2 d\mathbf{x} d\mathbf{y} < \infty \end{aligned}$$

Graph Spectral Theory

Continuous Version

$$\frac{\text{Self-adjoint operator!}}{\mathcal{T}_W f(\mathbf{x})} := \int_{\mathcal{D}} W(\mathbf{x}, \mathbf{y}) f(\mathbf{y}) d\mathbf{y}$$

$$\mathcal{U}\mathcal{T}_W = \Lambda \mathcal{U}$$

Spectral Theorem for self-adjoint operators

Unitary operator

Multiplicative operator

- Power series $\mathcal{T}_W^n f(\mathbf{x}) = \mathcal{T}_W \mathcal{T}_W^{n-1} f(\mathbf{x}) = \int_{\mathcal{D}} W(\mathbf{x}, \mathbf{y}) \mathcal{T}_W^{n-1} f(\mathbf{y}) d\mathbf{y}, \mathcal{T}_W^0 = \mathcal{I}$
- Graphon Convolution

$$\mathcal{H}f = \sum_{k=0}^\infty w_k \mathcal{T}_W^{\;k} f pprox heta_1 f + heta_2 \mathcal{T}_W f$$

UNIVERSITY OF ILLINOIS URBANA-CHAMPAIGN

Results

		Rotated OM9	Table 1: NMAE (%) on QM9, Cubic, and MD datasets.												
	50.0			Dataset/Model		CNN	Interpolation Net					Neu	Neural Operator		
		GNO	Dutused Wieder				DeepDFT	DeepDFT	2 Dime	Net]	DimeNet++	GNO	FNO	LNO	
	-		QM9	rotated unrotated	4.73 0.93	5.89 2.01	5.87 2.95	4.98 1.03	12.9 11.9	98 97	12.75 11.69	46.90 40.86	33.25 28.83	24.13 26.14	
	-		Cubic		8.98	OOM	14.08	10.37	12.5	51	12.18	53.55	48.08	46.33	
			MD	ethanol	8.43	13.97	7.34	8.83	13.9)9	14.24	82.35	31.98	43.17	
	20.0			benzene	5.11	11.98	6.61	5.49	14.4	8	14.34	82.46	20.05	38.82	
%	20.0	s1 s2 ND no-res CNN DeepDFT		resorcinol	5.51 5.95	11.52	9.09 8.18	7.00 6.95	12.5)4	12.99	58.75	42.98	35.07	
<u> </u>				ethane	7.01	14.72	8.31	6.36	13.1	1	12.95	71.12	26.31	77.14	
Ш				malonaldehyde	10.34	18.52	9.31	10.68	18.7	1	16.79	84.52	34.58	47.22	
МИ	s0			Table	2: NMAI	E (%) and	the parame	eter count	of differe	nt mod	lel settings	on the Q	QM9 data	aset.	
	- s1			Мо	del	InfGCN(s	$s_7) s_6$	s_5 s	s_4 s_3	s_2	s_1	s_0	no-res	fc	
	-			QM-ro	ot (%)	4.73	4.77	4.76 4.	77 4.86	6.9	5 9.56	12.62	6.14	4.95	
	-			QM-unrot (%)		0.93	1.01	1.11 1.	08 1.46	4.6	5 8.07	12.05	3.72	1.36	
	6.0 -			Paramet	ers (M)	1.20	0.85	0.58 0.	39 0.26	0.1	7 0.13	0.11	1.16	17.42	
	5.0 -	s3 s4 s5 s6 InfGCN DeepDFT2 fc													
	4.0 0.1 0.2	2 1.0 2.0 1	0.0	40.0	Resi	idual	oper	ator l	aver	is i	mpor	rtani	t!		
		Model size / M													

Results

Thanks

Chaoran Cheng <u>chaoran7@illinois.edu</u> <u>https://ccr-cheng.github.io/</u>

