Decision Tree for Locally Private Estimation with Public Data

Oct 10, 2023

Yuheng Ma, Han Zhang, Yuchao Cai, Hanfang Yang. NeurIPS 2023.

Motivation

Differential Privacy (DP)

- "the" mathematical definition of privacy leakage
- Involving noise adding to
 - Gradient: gradient perturbation
 - Loss function: objective perturbation
 - Essential statistics: output perturbation
- Generally, more privacy, more noise, less accuracy

Local DP

- Opposite to central DP, local DP pose more strict privacy constraints
 - Trusted curator (for instance, group leader)
 - Untrusted curator (for instance, large tech company)

Fundamental Problem of LDP

Slow convergence

• More amount of noise added in LDP, see [1][2] for instance

Resource demanding

Computation & memory & communication capacity of terminal machine

Basic operations are prohibited

• PCA, SVD, standardization, decision tree partition

[1] John C Duchi, Michael I Jordan, and Martin J Wainwright. Minimax optimal procedures for locally private estimation. Journal of the American Statistical Association, 113(521): 182–201, 2018.

[2] Cai T T, Wang Y, Zhang L. The cost of privacy: Optimal rates of convergence for parameter estimation with differential privacy[J]. The Annals of Statistics, 2021, 49(5): 2825-2850.

Public Data Helps!

Slow convergence

Improve utility by public pretraining; public gradient preconditioning [1][2]

Resource demanding

• Allow designing of non-interactive methods [3]

Basic operations are prohibited

- Public standardization [4], covariance matrix estimation [3]
- Decision tree partition (ours)

[1] Da Yu et al. Differentially private fine-tuning of language models. ICLR 2022.
 [2] Da Yu et al. Do not let privacy overbill utility: Gradient embedding perturbation for private learning. ICLR 2021.
 [3] Di Wang, Lijie Hu, Huanyu Zhang, Marco Gaboardi, and Jinhui Xu. Generalized linear models in non-interactive local differential privacy with public data. Journal of Machine Learning Research, 24(132):1–57, 2023.
 [4] Bie A, Kamath G, Singhal V. Private estimation with public data. NeurIPS 2022.

Why is decision tree important?

- Previous work on nonparametric regression [1][2][3] show the theoretical superiority of histogram over other attempts
- Empirical evidence: histogram is inefficient!
 - Curse of dimensionality
 - Effected by marginal (density variation & useless feature)
 - Ignore information in data
- Decision tree has: higher accuracy than histogram; interpretability; efficiency; stability, extensiveness to multiple feature types; resistance to the curse of dimensionality
- We can not do decision tree partition in LDP without public data!

[1] Berrett T B, Györfi L, Walk H. Strongly universally consistent nonparametric regression and classification with privatised data[J]. Electronic Journal of Statistics, 2021, 15: 2430-2453.

[2] Györfi L, Kroll M. On rate optimal private regression under local differential privacy[J]. arXiv preprint arXiv:2206.00114, 2022.

[3] Farokhi F. Deconvoluting kernel density estimation and regression for locally differentially private data. Scientific Reports, 2020, 10(1): 21361.

Methodology

Overview

- Given both public and private datasets, we:
 - first create partition on public data
 - then estimate privately on private data
- In doing so, the estimator
 - remains rate optimal in a milder assumption
 - is free of range parameter
 - has significant better empirical performance

Max-edge Partition Rule

- For each grid, the partition rule selects the midpoint of the longest edges that achieves the largest variance reduction
- This procedure continues until there are not enough samples contained in any leaf node, or the depth of the tree reaches its limit
- No private concern

Privacy for Partition Estimation

• Given partition π , let $U_i \in \{0,1\}^{|\mathcal{I}|}$ and $U_i^j = 1\{X_i \in A_j\}$

$$f_{\pi}(x) = \sum_{j \in \mathscr{F}} 1_{A_j} \frac{\sum_{i=1}^{n} Y_i \cdot U_i^j}{\sum_{i=1}^{n} U_i^j} \approx \int_{A_j} f^*(x) dP(x') \text{ joint estimation}$$
conditional distribution estimation: decision tree

$$\tilde{f}_{\pi}(x) = \sum_{j \in \mathscr{I}} 1_{A_j} \frac{\sum_{i=1}^n \tilde{Y}_i \cdot \tilde{U}_i^j}{\sum_{i=1}^n \tilde{U}_i^j}$$

private joint estimation

private marginal estimation

private conditional distribution estimation: private decision tree

Perturbation Mechanism

• Protect *Y* by Laplacian noise i.e.
$$\tilde{Y}_i = Y_i + \frac{4M}{\varepsilon}\xi_i$$

• Protect U by random response, i.e.

$$\tilde{U}_i^j = \begin{cases} U_i^j - \frac{1}{1 + e^{\varepsilon/4}} & \text{with probability } \frac{e^{\varepsilon/4}}{1 + e^{\varepsilon/4}} \\ 1 - U_i^j - \frac{1}{1 + e^{\varepsilon/4}} & \text{with probability } \frac{1}{1 + e^{\varepsilon/4}} \end{cases}.$$

Locally Private Decision Tree

Theoretical Results

Utility

Assumption 3.2. Let $\alpha \in (0, 1]$. Assume the regression function $f : \mathcal{X} \to \mathbb{R}$ is α -Hölder continuous, i.e. there exists a constant $c_L > 0$ such that for all $x_1, x_2 \in \mathcal{X}$, $|f(x_1) - f(x_2)| \le c_L ||x_1 - x_2||^{\alpha}$. Also, assume that the density function of P is upper bounded, i.e. $p(x) \le \overline{c}$ for some $\overline{c} > 0$.

Assumption 3.3. We assume that there exists some constant $\tau > 1$ such that for all cells $A \in \pi$, there holds $\tau^{-1} \int_A dQ_X(x) \leq \int_A dP_X(x) \leq \tau \int_A dQ_X(x)$.

Theorem 3.4. Let f_{π}^{DP} be the LPDT estimator in Algorithm []. Suppose Assumption [3.2] and [3.3] hold. Then, for $n_q \gtrsim n^{\frac{d}{2\alpha+2d}}$, if we set $p \asymp \log n\varepsilon^2$ and $n_l \asymp n_q/2^p$, there holds

$$\mathcal{R}_{L,\mathrm{P}}(f_{\pi}^{\mathrm{DP}}) - \mathcal{R}_{L,\mathrm{P}}^* \lesssim \left(\frac{\log n}{n\varepsilon^2}\right)^{\frac{\alpha}{\alpha+d}\wedge\frac{1}{3}}$$

with probability $1 - 2/n_q^2 - 5/n^2$ with respect to $\mathbb{P}^n \otimes \mathbb{Q}^{n_q} \otimes \mathbb{R}^n$ where \mathbb{R}^n is the joint distribution of privacy mechanisms in (3) and (4).

Privacy

Theorem 3.1. Let $\pi = \{A_j\}_{j \in \mathcal{I}}$ be any partition of \mathcal{X} with $\bigcup_{j \in \mathcal{I}} A_j = \mathcal{X}$ and $A_i \cap A_j = \emptyset$, $i \neq j$. Then the privacy mechanism $\mathbb{R}(\tilde{U}, \tilde{Y} | X, Y)$ defined in (1) and (2) is ε -LDP. Consequently, the LPDT estimator f_{π}^{DP} in Algorithm 2 is ε -LDP.

Complexity

Table 1: Comparison of complexities of LDP regression methods.

	LPDT	PHIST 👂	DECONV [29]
Training Time Complexity	$\mathcal{O}(n\log n\varepsilon^2 + n_q d\log n\varepsilon^2)$	$\mathcal{O}(nd\log n\varepsilon^2)$	-
Testing Time Complexity	$\mathcal{O}(\log n \varepsilon^2)$	$\mathcal{O}(\log n arepsilon^2)$	$\mathcal{O}(nd)$
Space Complexity	$\mathcal{O}(\left(narepsilon^2/\log n ight)^{rac{d}{2lpha+2d}})$	$\mathcal{O}(\left(narepsilon^2/\log n ight)^{rac{d}{2lpha+2d}})$	$\mathcal{O}(nd)$

Experiments

Settings

- Consider $\varepsilon \in [0.5,8]$
- Consider partition rule of CART
- Parameter selection by cross validation in a non-private way, see discussion in [1][2][3].
- Comparison methods: DECONV [4] (deconvolution based), PHIST & APHIST [5][6] (histogram based)

[1] Nicolas Papernot and Thomas Steinke. Hyperparameter tuning with renyi differential privacy. ICLR 2021.

[2] Andrew Lowy, Zeman Li, Tianjian Huang, and Meisam Razaviyayn. Optimal differentially private learning with public data. arXiv preprint arXiv:2306.15056, 2023.

[3] Yuheng Ma, Hanfang Yang. Optimal Locally Private Nonparameteric Classification with Public Data.

[4] Farokhi F. Deconvoluting kernel density estimation and regression for locally differentially private data. Scientific Reports, 2020, 10(1): 21361.
 [5] Berrett T B, Györfi L, Walk H. Strongly universally consistent nonparametric regression and classification with privatised data[J]. Electronic Journal of Statistics, 2021, 15: 2430-2453.

[6] Györfi L, Kroll M. On rate optimal private regression under local differential privacy[J]. arXiv preprint arXiv:2206.00114, 2022.

Necessity of Public Data

• n = 6,000, $X \sim N(0.5,0.16), f^*(x) = \sin(16x) + \varepsilon$, without and with 1,000 public data.

The low-density regions can be identified and treated with larger cells automatically

Some Analysis

- Under the same distribution and other parameters fixed, examine influence of depth *p* and minimum leaf samples n_l. When facing higher levels of privacy demand, LPDT cuts down the number of grids to stabilize its estimation.
- LPDT achieves best privacy-utility trade off

Identically Distributed Public Data

- Over 14 datasets from UCI repository, LPDT outperforms.
- 100 public data and a fraction δ of 1100 private data of wine dataset. The utility increase brought by public data is significance.

DT		$\varepsilon = 2$				$\varepsilon = 6$					
	DI	LPDT-M	LPDT-V	APHIST	PHIST	DECONV	LPDT-M	LPDT-V	APHIST	PHIST	DECONV
ABA	5.67e+0	1.01e+1	1.01e+1	1.89e+1	1.06e+1	1.01e+7	8.38e+0*	7.34e+0*	2.05e+1	1.05e+1	1.09e+1
AIR	2.26e+1	4.80e+1*	4.69e+1*	1.31e+3	6.80e+1	3.00e+2	4.49e+1*	3.60e+1*	1.60e+3	4.98e+1	4.72e+1
ALG	2.12e-2	2.57e-1	2.43e-1	2.52e-1	2.52e-1	9.26e+4	2.44e-1	2.46e-1	2.63e-1	2.47e-1	3.14e-1
AQU	1.92e+0	2.99e+0*	2.99e+0*	4.01e+0	2.93e+0*	5.74e+3	2.73e+0*	2.67e+0*	4.75e+0	2.83e+0	2.96e+0
BUI	1.75e+5	1.50e+6*	1.64e+6*	-	-	1.20e+9	1.44e+6*	1.31e+6*	-	-	2.04e+7
CBM	4.08e-27	2.12e+0*	1.65e+0*	9.53e+0	6.97e+0	2.37e+3	7.62e-1*	1.23e-1*	4.94e+0	3.21e+0	1.23e+5
CCP	2.19e+1	1.50e+2*	1.06e+2*	2.07e+4	3.64e+2	3.03e+2	8.42e+1*	5.18e+1*	2.24e+4	3.28e+2	2.56e+2
CON	9.38e+1	2.94e+2*	2.89e+2*	3.81e+2	3.00e+2	2.24e+7	2.44e+2*	2.13e+2*	4.16e+2	2.96e+2	3.13e+2
CPU	2.15e+1	3.41e+2	9.00e+1*	9.26e+2	3.42e+2	2.15e+5	3.02e+2*	6.15e+1*	9.98e+2	3.40e+2	3.98e+2
FIS	1.07e+0	2.15e+0*	2.14e+0*	3.14e+0	2.22e+0	3.47e+3	1.65e+0*	1.76e+0*	3.60e+0	2.16e+0	2.21e+0
HOU	2.11e+1	8.10e+1*	8.22e+1*	1.06e+2	8.52e+1	1.92e+4	7.43e+1*	7.10e+1*	1.23e+2	8.21e+1	2.44e+2
MUS	3.00e+2	3.47e+2*	3.46e+2*	-	-	9.50e+3	3.27e+2*	3.27e+2*	-	-	8.09e+3
RED	4.76e-1	7.08e-1*	7.03e-1*	3.18e+0	7.57e-1	1.23e+8	6.75e-1*	6.12e-1*	3.80e+0	7.12e-1	8.66e-1
WHI	5.77e-1	8.30e-1	8.42e-1	4.01e+0	8.15e-1	1.64e+7	7.03e-1*	6.61e-1*	4.45e+0	8.03e-1	1.47e+0

Non-Identically Distributed Public Data

- Taxi trips in Chicago
- Fare ~ time, distance, start/end location, company, paying method. 101 features in total.
- Public: PR card, 24,000 instances
- Private: credit card, 2,100,000 instances
- The distributions are non-identical

How does public data work?

- First split features: whether drop off in district 32?
- Similar pattern, distinct distribution.

Performance

- With both public and private data, LPDT outperforms with mild privacy constraint.
- Replace a fraction δ of public data by private data. Similar public and private data is better.

δ

