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Motivation



• “the” mathematical definition of privacy leakage


• Involving noise adding to 


• Gradient: gradient perturbation


• Loss function: objective perturbation


• Essential statistics: output perturbation


• Generally, more privacy, more noise, less accuracy

Differential Privacy (DP)

3



Local DP

• Opposite to central DP, 
local DP pose more strict 
privacy constraints

• Trusted curator (for 
instance, group 
leader)

4

• Untrusted curator (for 
instance, large tech 
company)



• More amount of noise added in LDP, see [1][2] for instance
Slow convergence

Fundamental Problem of LDP
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Resource demanding
• Computation & memory & communication capacity of terminal machine

Basic operations are prohibited
• PCA, SVD, standardization, decision tree partition



• Improve utility by public pretraining; public gradient 
preconditioning [1][2]

Public Data Helps!
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Slow convergence
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Resource demanding
• Allow designing of non-interactive methods [3]

Basic operations are prohibited
• Public standardization [4], covariance matrix estimation [3]
• Decision tree partition (ours)



• Previous work on nonparametric regression [1][2][3] show the 
theoretical superiority of histogram over other attempts

Why is decision tree important?
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• Empirical evidence: histogram is inefficient!


• Curse of dimensionality


• Effected by marginal (density variation & useless feature)


• Ignore information in data
• Decision tree has: higher accuracy than histogram; interpretability; 

efficiency; stability, extensiveness to multiple feature types; 
resistance to the curse of dimensionality

• We can not do decision tree partition in LDP without public data!



Methodology
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• Given both public and private datasets, we:


• first create partition on public data


• then estimate privately on private data


• In doing so, the estimator


• remains rate optimal in a milder assumption


• is free of range parameter


• has significant better empirical performance

Overview
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p=0 p=3p=2p=1

Max-edge Partition Rule

• For each grid, the 
partition rule selects the 
midpoint of the longest 
edges that achieves the 
largest variance reduction


• This procedure continues 
until there are not enough 
samples contained in any 
leaf node, or the depth of 
the tree reaches its limit


• No private concern
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• Given partition , let  and  
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Privacy for Partition Estimation
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conditional distribution

estimation: decision tree

  marginal estimation ≈ ∫Aj

dP(x′ )

  joint estimation ≈ ∫Aj

f*(x)dP(x′ )

private marginal estimation 

private joint estimation 

private conditional 

distribution estimation:


private decision tree



• Protect  by Laplacian noise i.e. 


• Protect  by random response, i.e. 
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Ũj
i =

Uj
i − 1

1 + eε/4  with probability  eε/4

1 + eε/4

1 − Uj
i − 1

1 + eε/4  with probability  1
1 + eε/4 .

Perturbation Mechanism
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Locally Private Decision Tree
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Theoretical Results
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Utility
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Privacy
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Complexity



Experiments
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• Consider 


• Consider partition rule of CART


• Parameter selection by cross validation in a non-private way, 
see discussion in [1][2][3].


• Comparison methods: DECONV [4] (deconvolution based), 
PHIST & APHIST [5][6] (histogram based)

ε ∈ [0.5,8]

Settings
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Necessity of Public Data
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• The low-density regions can be identified and treated with larger 
cells automatically

• n = 6,000, , , without and 
with 1,000 public data.

X ∼ N(0.5,0.16) f*(x) = sin(16x) + ε



Some Analysis
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• Under the same distribution and other parameters fixed, examine 
influence of depth  and minimum leaf samples . When facing 
higher levels of privacy demand, LPDT cuts down the number of 
grids to stabilize its estimation.

p nl

• LPDT achieves best privacy-utility trade off



Identically Distributed Public Data
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• Over 14 datasets from UCI repository, LPDT outperforms.

• 100 public data and a fraction  of 1100 private data of wine 
dataset. The utility increase brought by public data is significance.

δ



Non-Identically Distributed Public Data
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• Taxi trips in Chicago


• Fare ~ time, distance, start/end 
location, company, paying 
method. 101 features in total.


• Public: PR card, 24,000 instances


• Private: credit card, 2,100,000 
instances


• The distributions are non-identical



How does public data work?
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• First split features: 
whether drop off in 
district 32?


• Similar pattern, distinct 
distribution. 



• With both public and private data, LPDT outperforms with mild 
privacy constraint. 


• Replace a fraction  of public data by private data. Similar 
public and private data is better.

δ

Performance
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Q&A
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Code


