
Square Loss:   which is non-convex 
in  and  denotes the data in a matrix form.
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1
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Implicit bias of the Parameters
Initialization (I) :  where  and   and 

. Here  refers to the scale of initialization. 

Gradient Flow:   We train with gradient flow (GF) on the loss ,  

 

Theorem : When trained with GF and initialized as (I), let , 

a) Convergence to the solution:   

b) Implicit bias: 

★   :         

★  :    

Comments: 

- when ,  GF converges to min-norm interpolator  ensuring 
that . 

-  is a smooth approximation of rank and intuitively larger 
 pushes to large rank. 

W = 2γP P ∈ ℝd×l PP⊤ = Id
W2 = 0 γ

L
·W1 = − ∇W1

L(W1, W2) = (X⊤(Y − XW1W2))W⊤
2 ,

·W2 = − ∇W2
L(W1, W2) = W⊤

1 (X⊤(Y − XW1W2))
.

β = W1W2

lim
t→∞

L (W1(t), W2(t)) → 0

β β∞ = lim
t→∞

β(t) = argmin
Xβ∈Y

∥β∥2 = β*

W1, W2 W∞
1 , W∞

2 = argmin
XW1W2=Y

∥W1∥2
F + ∥W2∥2

F − 2γ log det W⊤
1 W1

γ → 0
rank(W∞

1 ) = k

log det ( . )
γ

Corollary: We have the 
following expressions of final 
singular values.  For ,

 

,

and for , 

1 ≤ i ≤ k

σi (W∞
1 ) = ( σi(β*) + γ2 + γ)

1/2

k < i ≤ d

σi (W∞
1 ) = (2γ)1/2

GF converges to a low-rank  at small  (rich regime), whereas 
converges to a high-rank  at large  (lazy regime).  

W1 γ
W1 γ

Evolution of singular values along the train when 
trained with different scales and init. shape.

Regression with Linear Network

Dependence on initialization : Consider the problem of scalar 
regression, i.e., k = 1. 

 initialized a large scaleW1, W2  initialized at a small scaleW1, W2

The direction of neurons of  at the end of training.W1

Different regimes: For higher scale of initialization, the neurons at 
convergence point in many directions (lazy training). For smaller 
scale of initialization, the neurons point towards a few feature 
directions (feature learning). 

The aim of the paper:  To rigorously study the impact of the 
initialization on the learning dynamics while training linear 
networks with gradient methods. 

Linear Network: Let hidden layer be 
 and weight layer .  

The network  represents the function

.

W1 ∈ ℝd×l W2 ∈ ℝl×k

f(x) = W⊤
2 W⊤

1 x

l

A linear network representing function  f

W1 W2

d
k

Setup:  The  from  and w.l.o.g assume the labels are 
generated by   and  .

(xi)n
i=1 ℝd

yi = U⊤
* xi ∈ ℝk U* ∈ ℝd×k

Going beyond small - noisy dynamicsγ

Non-linear ReLU activation

Evolution of singular values along the train when 
trained with different scales for the ReLU network

A simplified setup: Let  be any two orthogonal directions. We sample 
inputs  from standard normal distribution, i.e.,  and we 
generate labels by a teacher network,

We train a student network with 20 neurons on this data. 

u, v
(xi)n

i=1 xi ∼ 𝒩(0,I)

yi = σ(u⊤xi) + σ(v⊤xi) .

Small initialization is 
effective in recovering 
features even with 
ReLU activation.

Evolution of direction of neurons when trained with LNGD, shows 
neuron alignment at even large init. scale 

LNGD:  Let  denote a n-dimensional brownian motion, Bt

dW = a(X⊤(Y − XW⊤a))⊤dt + a(X⊤(dBt)⊤,
da = W(X⊤(Y − XW⊤a))dt + W(X⊤dBt) .
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