Streaming PCA For Markovian Data

Syamantak Kumar and Purnamrita Sarkar UT Austin

PCA as an optimization problem

- **X**₁,..., X_n are IID mean zero random vectors in d dimensions with covariance matrix Σ.
 - Σ has eigenvectors $v_1, ..., v_d$ and eigenvalues $\lambda_1 > \lambda_2 \ge ... \ge \lambda_d$
- **GOAL in PCA** : estimate top eigenvector of Σ.

• We are optimizing
$$\widehat{w} := \operatorname*{arg\,max}_{\|w\|_2 = 1} \sum_{i=1}^n \left(X_i^T w \right)^2$$

• Convergence measured in terms of the sin² error - $1 - (\widehat{w}^T v_1)^2$

1. Oja, E. 1982

Our goal

- Existing results hold for the IID case
- Many real world scenarios have data coming from a Markov chain
- GOAL Obtain similar results in the Markovian case

Setup

■ Consider an irreducible, aperiodic and reversible^{*} finite state space Markov Chain

- stationary distribution π
- Transition matrix P
- Second largest eigenvalue of P in magnitude $\lambda_2(P)$

- Mean zero $E_{\pi}[X_i] = 0$
- GOAL: estimate top eigenvector of $E_{\pi}[X_iX_i^T]$

Motivation

- Consider the classical federated learning setup with data distributed in a network of machines
- <u>Aim</u> : Decentralized algorithm for PCA on the global dataset
- Token Algorithms -
 - Construct Markov chain
 - Random walk with update at each timestep

Streaming PCA on Markovian Data

X₁

Streaming PCA on Markovian Data

Downsample?

Downsampled Oja [Chen et al, 2018] performs **significantly worse** than Oja's algorithm on the whole data

Our contribution

	Offline	Online
IID	$O\left(rac{\mathcal{V}\log(d)}{(\lambda_1-\lambda_2)^2n} ight)$ Matrix Bernstein	$O\left(rac{\mathcal{V}}{(\lambda_1-\lambda_2)^2n} ight)$ Oja's algorithm
	Jain et al. (2016)	Jain et al. (2016)
Markovian	$O\left(rac{\mathcal{V}\log(d)}{(\lambda_1-\lambda_2)^2n(1-\lambda_2(P))} ight)$	$O\left(\frac{\mathcal{V}}{(\lambda_1-\lambda_2)^2n(1-\lambda_2(P))}\right)$
	Neeman et al. (2023)	Our work

Table: sin² error rate

Thank you!

Wednesday, Dec 13, 10:45AM Poster Session 3