Token-Scaled Logit Distillation for Ternary Weight Generative Language Models

NeurIPS 2023

Minsoo Kim, Sihwa Lee, Janghwan Lee, Sukjin Hong, Du-Seong Chang, Wonyong Sung and Jungwook Choi

minsoo2333@hanyang.ac.kr

Challenge of Ternary Large Language Model: Accuracy Loss

- Memory wall in Hyper-scale LLM => ternary weight quantization
 - 1) 16x less GPU memory requirement than FP32
 - 2) Multiplication-less MATMUL Implementation

Challenge of Ternary Large Language Model: Accuracy Loss

- Memory wall in Hyper-scale LLM => ternary weight quantization
 - 1) 16x less GPU memory requirement than FP32
 - 2) Multiplication-less MATMUL Implementation
- Challenge: significant accuracy loss with SOTA LLM compression methods

Challenge of Ternary Large Language Model: Accuracy Loss

- Memory wall in Hyper-scale LLM => ternary weight quantization
 - 1) 16x less GPU memory requirement than FP32
 - 2) Multiplication-less MATMUL Implementation
- Challenge: significant accuracy loss with SOTA LLM compression methods

Al Hardware and

Memory-efficient, superior learning QAT-KD method for GLMs up to 7B

Challenge 1. Cumulative Errors in Causal Attention

• Challenge) Cumulative quantization error towards latter tokens in causal attention

Challenge 1. Cumulative Errors in Causal Attention

- Challenge) Cumulative quantization error towards latter tokens in causal attention
- Current KD methods for QAT of Transformer Encoders/Decoders
 - Layer-to-Layer (L2L) KD: KD on every Transformer layer's output and attention scores
 - Logit KD : cross-entropy loss between final logits from teacher and student model

Cumulative Quantization Error

 $P_{n,i}^T \log(P_{n,i}^S)$

KD methods for Decoder QAT

Logit Distillation for Cumulative Quantization Error

- L2L KD fails to align final logit distribution, but Logit KD accurately reproduce the final logit distribution.
- Accurate final logit distance -> Improve accuracy in language modeling task! (lower PPL score)

Logit KD: memory-efficient and natural choice for GLM QAT

Challenge 2. How to Exploit Ground-Truth for Language Modeling in QAT?

- "Employing GT Loss in QAT-KD adversely impacts the performance of decoder!" [1]
- Challenge) GT Loss is employed with KD in Decoder QAT, overfitting is observed!

Al Hardware and Algorithm Lab

HANYANG UNIVERSITY

[1] Tao et al, "Compression of Generative Pre-trained Language Models via Quantization", ACL 2022

Challenge 2. How to Exploit Ground-Truth for Language Modeling in QAT?

- "Employing GT Loss in QAT-KD adversely impacts the performance of decoder!" [1]
- Challenge) GT Loss is employed with KD in Decoder QAT, overfitting is observed!

Al Hardware and Algorithm Lab

HANYANG UNIVERSITY

[1] Tao et al, "Compression of Generative Pre-trained Language Models via Quantization", ACL 2022

- Per-token prediction analysis -> Token Confidence Demarcation: High Conf/Low Conf
 - High Conf. : High max probability with low CE loss (overlap with GT Loss)
 - Low Conf. : Low max probability with high CE loss (rich soft label information)

- Per-token prediction analysis -> Token Confidence Demarcation: High Conf/Low Conf
 - High Conf. : High max probability with low CE loss (overlap with GT Loss) -> Down Scaling
 - Low Conf. : Low max probability with high CE loss (rich soft label information) -> Up Scaling

• Token-Scaled Logit Distillation (TSLD)

- Apply dynamic reweighting to Logit KD: (\downarrow) reduce overfitting + (\uparrow) superior learning from teacher

• Token-Scaled Logit Distillation (TSLD)

- Apply dynamic reweighting to Logit KD: (\downarrow) reduce overfitting + (\uparrow) superior learning from teacher

Effectiveness of TSLD (1): Language Modeling

- Evaluation on Language Modeling Task over 0.1B to 6.7B GLMs
 - 4-bit: QAT methods outperforms PTQ (OPTQ) methods, TSLD offers the lowest perplexity
 - 2-bit (ternary): L2L KD shows significant perplexity degradation and Logit+GT suffers from overfitting.
 - TSLD outperforms every KD methods across all model sizes.

Precision	Quantization	Optimization	GPT-2 OPT						PT.	
	Method	Method	0.1B	0.3B	0.8B	1.5B	0.1B	1.3B	2.7B	6.7B
FP16 baseline			20.91	18.21	15.20	14.26	18.17	13.75	11.43	10.21
W4A16	PTQ	OPTQ [13]	22.41	19.35	17.26	15.86	19.75	14.30	11.82	11.73
	QAT	Logit [32] Logit+GT	20.98 21.51	18.54 18.58 17.53	16.79 15.49	15.42 14.89	17.60 19.63	13.73 15.03	11.82 12.58	11.20 11.78
		ISLD	19.93	17.55	13.32	14.30	17.43	13.90	11.37	11.00
W2A16	QAT	L2L+Logit [44]	23.79	21.21	17.80	15.82	20.47	17.62	14.67	11.75
		Logit [32]	22.84	19.87	16.46	15.27	18.86	14.80	12.26	11.33
		Logit+GT	23.80	20.20	17.77	16.52	21.62	16.41	13.20	12.41
		TSLD	21.74	18.57	16.14	15.02	18.58	14.60	11.97	11.17

Perplexity evaluation in language modeling with 0.1B to 6.7B GLMs

Table 1: Perplexity comparison in GPT-2 and OPT series across various model sizes (0.1B to 6.7B) on the PTB dataset with QAT-KD (tensor-wise) and PTQ (channel-wise) quantization methods

Effectiveness of TSLD (2): Reasoning and NLU Task Accuracy

- Evaluation of reasoning task and natural language understanding tasks over OPT, GPT-Neo, and LLaMA
 - With "task" accuracy, including GT Loss in KD outperforms Logit KD only.
 - TSLD achieves better task accuracy thanks to avoiding overfitting from ground-truth

OAT KD	PIQA Opent		ookQA ARC		_easy ARC_e		allenge	GSM8K		
Method	ACC (†)	$\mathrm{PPL}\left(\downarrow\right)$	$ $ ACC (\uparrow)	PPL (\downarrow)	$ $ ACC (\uparrow)	PPL (\downarrow)	ACC (\uparrow)	$\operatorname{PPL}\left(\downarrow\right)\ \big $	ACC (\uparrow)	$\mathrm{PPL}\left(\downarrow\right)$
OPT-2.7B FP16	76.71	10.91	49.60	26.16	66.12	7.41	37.20	8.96	20.39	2.07
Logit [24]	74.32	11.69	45.40	29.41	58.92	9.05	31.91	12.38	20.02	2.03
GT+Logit	74.97	12.10	46.20	31.08	58.84	8.66	32.16	12.04	19.56	2.12
TSLD	75.62	11.35	46.81	28.93	59.39	8.12	33.45	11.05	20.24	2.03
	Model GPT-Neo-1.3B		OPT-6.7B		LLaMA-7B		5	_		
	QAT KD) PTB	(PPL)	GSM8K (A	CC/PPL)	PTB (PPL)	GSM8K	(ACC/PPL)		
	FP16	17.0	52 (↓)	22.52 (†)	1.89 (↓)	8.76 (↓)	30.25 (†)) 1.47 (↓)		
	Logit [24	4] 21.01		21.08	1.93	12.22	25.47	1.52		
	TSLD	19	9.27	24.49	2.14	11.60	26.23	1.52		
	FP16 Logit [24 TSLD	17.0 17.0 2.1 19	62 (↓) 1.01 0.27	22.52 (†) 21.08 24.49	1.89 (↓) 1.93 2.14	8.76 (↓) 12.22 11.60	30.25 (†) 25.47 26.23) 1.47 (↓) 1.52 1.52	-	

Reasoning Task evaluation with OPT series, GPT-Neo-1.3B, and LLaMA-7B

Precision	OAT KD	CoLA		MRPC		SST-2		RTE	
	Method	ACC (†)	PPL (\downarrow)	$ $ ACC (\uparrow)	PPL (\downarrow)	ACC (†)	PPL (\downarrow)	ACC (\uparrow)	PPL (\downarrow)
OPT-1	.3B FP16	61.03	1.34	81.92	2.58	94.26	2.00	76.53	3.94
W4A16	OPTQ [14] AWQ [13]	54.61 13.63	1.36 1.45	80.14 66.42	2.43 3.49	95.07 94.26	2.02 2.02	56.32 54.51	3.96 4.72
	Logit [24] GT+Logit TSLD	50.76 ±2.35 54.07 ±0.34 56.33 ±0.98	1.36 1.34 1.34	81.94 ±1.48 83.17 ±0.51 83.33 ±1.22	2.62 2.60 2.52	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2.09 2.11 2.04	75.23 ±0.83 75.31 ±1.07 75.97 ±0.31	4.34 4.09 4.05
W2A16	Logit [24] GT+Logit TSLD	48.72 ±2.68 50.10 ±1.38 54.47 ±1.47	1.37 1.34 1.34	$\begin{array}{c} 81.62 \pm 0.62 \\ 82.10 \pm 0.99 \\ \hline \textbf{82.20} \pm 0.94 \end{array}$	2.79 2.65 2.63	93.08 ±0.35 92.77 ±0.28 93.92 ±0.29	2.11 2.14 2.06	$74.15 \pm 1.36 \\73.79 \pm 1.16 \\75.31 \pm 0.54$	4.72 4.44 4.36

NLU task evaluation with OPT-1.3B (language modeling fine-tuning employed)

Thank You!

For more question and discussion, please visit poster session 3 #536. 🤐

