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Challenge of Ternary Large Language Model: Accuracy Loss

2

• Memory wall in Hyper-scale LLM => ternary weight quantization
– 1) 16x less GPU memory requirement than FP32
– 2) Multiplication-less MATMUL Implementation
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Challenge of Ternary Large Language Model: Accuracy Loss
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• Memory wall in Hyper-scale LLM => ternary weight quantization
– 1) 16x less GPU memory requirement than FP32
– 2) Multiplication-less MATMUL Implementation

• Challenge: significant accuracy loss with SOTA LLM compression methods

Ternary Weight LLM Performance (OPT-6.7B)
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Challenge of Ternary Large Language Model: Accuracy Loss
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• Memory wall in Hyper-scale LLM => ternary weight quantization
– 1) 16x less GPU memory requirement than FP32
– 2) Multiplication-less MATMUL Implementation

• Challenge: significant accuracy loss with SOTA LLM compression methods

Ternary Weight LLM Performance (OPT-6.7B)

💡Memory-efficient, superior learning QAT-KD method for GLMs up to 7B
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Challenge 1. Cumulative Errors in Causal Attention
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• Challenge) Cumulative quantization error towards latter tokens in causal attention

Cumulative Quantization Error

Self-Attention Attention Map Quantization Error
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Challenge 1. Cumulative Errors in Causal Attention
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• Challenge) Cumulative quantization error towards latter tokens in causal attention
• Current KD methods for QAT of Transformer Encoders/Decoders

– Layer-to-Layer (L2L) KD: KD on every Transformer layer’s output and attention scores
– Logit KD : cross-entropy loss between final logits from teacher and student model

Cumulative Quantization Error

Self-Attention Attention Map Quantization Error

Causal Attention Attention Map Quantization Error

Encoder
(BERT-base)

Decoder
(GPT-2)
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Logit Distillation for Cumulative Quantization Error
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• L2L KD fails to align final logit distribution, but Logit KD accurately reproduce the final logit distribution.
• Accurate final logit distance -> Improve accuracy in language modeling task! (lower PPL score)

L2L KD

Logit KD

Attention Map Quantization Error Activation Analysis with Different KDs

Token Representation Min-Max

Logit Distance per Layer Comparison

L2L QAT-KD PPL (↓)
W2A16: 20.47 (+2.30)

Logit QAT-KD PPL (↓)
W2A16: 18.86 (+0.61)

Language Modeling
PPL Score

💡 Logit KD: memory-efficient and natural choice for GLM QAT



Challenge 2. How to Exploit Ground-Truth for Language Modeling in QAT?
• “Employing GT Loss in QAT-KD adversely impacts the performance of decoder!” [1] 
• Challenge) GT Loss is employed with KD in Decoder QAT, overfitting is observed!
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[1] Tao et al, “Compression of Generative Pre-trained Language Models via Quantization”, ACL 2022
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Token-Scaled Logit Distillation for Avoiding Overfitting with GT Loss
• Per-token prediction analysis -> Token Confidence Demarcation: High Conf/Low Conf 

– High Conf. : High max probability with low CE loss (overlap with GT Loss) 

– Low Conf. : Low max probability with high CE loss (rich soft label information)
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Token-Scaled Logit Distillation for Avoiding Overfitting with GT Loss
• Per-token prediction analysis -> Token Confidence Demarcation: High Conf/Low Conf 

– High Conf. : High max probability with low CE loss (overlap with GT Loss) -> Down Scaling

– Low Conf. : Low max probability with high CE loss (rich soft label information) -> Up Scaling
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Token-Scaled Logit Distillation for Avoiding Overfitting with GT Loss
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• Token-Scaled Logit Distillation (TSLD)
– Apply dynamic reweighting to Logit KD: (↓) reduce overfitting + (↑) superior learning from teacher
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Token-Scaled Logit Distillation for Avoiding Overfitting with GT Loss
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• Token-Scaled Logit Distillation (TSLD)
– Apply dynamic reweighting to Logit KD: (↓) reduce overfitting + (↑) superior learning from teacher
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Effectiveness of TSLD (1): Language Modeling
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• Evaluation on Language Modeling Task over 0.1B to 6.7B GLMs
– 4-bit: QAT methods outperforms PTQ (OPTQ) methods, TSLD offers the lowest perplexity
– 2-bit (ternary): L2L KD shows significant perplexity degradation and Logit+GT suffers from overfitting.
– TSLD outperforms every KD methods across all model sizes.

Perplexity evaluation in language modeling with 0.1B to 6.7B GLMs



Effectiveness of TSLD (2): Reasoning and NLU Task Accuracy
• Evaluation of reasoning task and natural language understanding tasks over OPT, GPT-Neo, and LLaMA

– With “task” accuracy, including GT Loss in KD outperforms Logit KD only.
– TSLD achieves better task accuracy thanks to avoiding overfitting from ground-truth
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Reasoning Task evaluation with OPT series, GPT-Neo-1.3B, and LLaMA-7B

NLU task evaluation with OPT-1.3B (language modeling fine-tuning employed)



Thank You!
For more question and discussion, please visit poster session 3 #536.
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