
A Metadata-Driven Approach to 
Understand Graph Neural Networks

Ting Wei Li1, Qiaozhu Mei1, Jiaqi Ma2

1 University of Michigan
2 University of Illinois Urbana-Champaign



Motivation

1. Data Properties affect GNN performance.

-> Ex: Homophily assumption.

2. Graph learning benchmarks become more accessible.

-> Open Graph Benchmark, Graph Learning Indexer, …

Question: Can we infer critical data properties from GNN performance on benchmark datasets?



Main Contribution

- We introduce a novel metadata-driven approach to identify critical graph data 
properties affecting GNN performance. 

- We demonstrate its effectiveness through a case study on a specific salient data property 
identified by our approach (Gini. of degree distribution, or, Gini-Degree).

- We develop an in-depth understanding of how the degree distribution of graph data 
influences GNN performance through both a novel theoretical analysis and a carefully 
controlled experiment.



Regression Analysis: Identifying Salient Factors

Given two observation matrices (Metadata matrices from benchmark experiments),

1) Model Performance Matrix: each entry means the performance (accuracy) of a model 

when applying on a specific dataset

2) Graph Feature Matrix: each entry means a particular property of the graph dataset (such 

as clustering coefficient, homophily ratio, …)



Datasets Considered



Graph Data Properties Considered

• Basic: Edge Density, Average Degree, Degree Assortativity;

• Distance: Pseudo Diameter;

• Connectivity: Relative Size of Largest Connected Component (RSLCC);

• Clustering: Average Clustering Coefficient (ACC), Transitivity, Degeneracy;

• Degree Distribution: Gini Coefficient of Degree Distribution (Gini-Degree);

• Attribute: Edge Homogeneity, In-Feature Similarity, Out-Feature Similarity, Feature Angular

SNR, Homophily Measure, Attribute Assortativity



Regression Analysis: Formulation

We define a Multivariate Sparse Group Lasso Problem to solve the dependency between 

model performance and dataset properties. [Here Y is the model performance matrix, X is the 

graph feature matrix and B is the coefficient matrix]



Regression Analysis: Formulation

- The L1 penalty encourages the coefficient matrix B to be sparse, only selecting salient 

data properties. 

- The L2,1 penalty further leverages the structure of the dependent variables and tries to 

select relevant data properties at a group level. If a property is selected, then most of the 

coefficients will be non-zero, which is better for us to discover “widely influential 

factors”.



Regression Analysis: Result



Regression Analysis: Result

We focused on: Gini-Degree (Gini coefficient of the degree distribution)

Gini Coefficient of Degree Distribution measures how the degree distribution deviates from a 

uniform distribution. 

Gini-Degree has a negative correlation with GNN performance!

We will focus on the property for a in-depth theoretical analysis and a controlled experiment.



(Conti.) With additional GNN models



Sketch of the Theoretical Analysis

- Our analysis investigates the linear separability of node representations produced by 

applying graph convolution to the node features. 

- In the case that the graph data comes from a Degree-Corrected Contextual Stochastic 

Block Model (DC-CSBM) with 2 classes, we show that nodes from different classes are 

more separable when their degree exceeds a threshold. 

- This separability result relates the graph data’s degree distribution to the GNN model 

performance. 



Graph Convolution Operation



DC-CSBM with 2 classes

- Class assignment: each node has an i.i.d. Bernoulli random variable (p=0.5) determining 

its class label.

- Edge probability: intra-class edge probability is p and inter-class edge probability is q. 

(Normally p is larger than q)

- Degree-correction parameter: θi ∈ (0, n], which is the propensity of node i to connect 

with other nodes. We have a constraint that the sum of all θi equals to n. 

[Normal SBM: all θi = 1][We let the average degree be fixed.]



DC-CSBM with 2 classes

Assumptions on adjacency matrix and feature matrix:

- Edge generation: conditioning on the class assignment, if i, j are in the same class, then Aij ~ 

Poisson(θi*θj*p); if i, j are in different classes, then Aij~ Poisson(θi*θj*q).

- Node feature generation: nodes in class 0 will have their feature from independent 

d-dimensional Gaussian random vector with mean µ0; nodes in class 1 will have their feature 

from independent d-dimensional Gaussian random vector with mean µ1.

So for a particular choice of n, µ0, µ1, p, q and θ, we can define a class of random graphs generated 

by these parameters and we can sample a random graph from this model.



Linear Separability

Linear separability refers to the ability to linearly differentiate nodes in the two classes based on their 

feature vectors. (i.e. finding a hyperplane to separate two groups of nodes)

Linear separability is closely related to GNN performance. Intuitively, more nodes being linearly 

separable will lead to better GNN performance.



Degree-Thresholded Subgroups 

To better control the behavior of graph convolution operation, we will focus on particular 

subgroups of C0 and C1 where the member nodes having their degree-corrected factor (θ)  

larger or equal to a pre-defined threshold α > 0.



Main Theorem



Main Theorem
the degree threshold!

the group of nodes whose degree 
exceeds the threshold alphaconvoluted node feature



Theoretical Analysis: Implications

The theorem implies the negative correlation between Gini-Degree and GNN performance

-> higher Gini-Degree implies more high-degree nodes in the network

-> result in more nodes receiving lower degrees

-> fewer nodes having degrees exceeding a certain threshold

-> smaller size of alpha subgroup

-> fewer nodes that can be linear separated

-> worse GNN model performance



Controlled Experiment: Setup

- Use GraphWorld1 to generate synthetic datasets and adjust the parameter: power-law 

coefficient of the degree distribution to control the “Gini coefficient of the degree 

distribution”

- validate the efficacy of our regression analysis and open the door of further study on 

other graph properties (that potentially affect GNN’s performance)

[1] Graphworld: Fake graphs bring real insights for gnns, J Palowitch et al. 2022



Controlled Experiment: Result



Future Direction

- Further Investigation on other salient factors using other appropriate graph generation 

model and mathematical tools.

- Better GNN design to overcome the dependency on these dataset factors.

- AutoML perspective: when new datasets coming in, we can use the graph data 

properties to identify the most “similar” datasets where benchmark GNN performance is 

available. Then we can apply the best GNN design we know on these new datasets.



Thank you!!


