

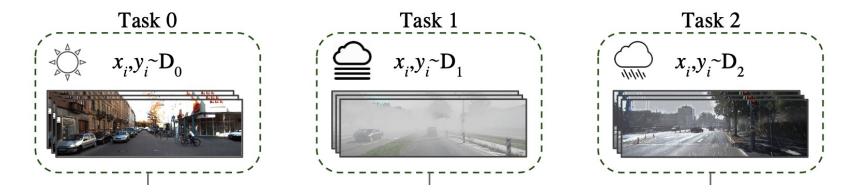
A Unified Approach to Domain Incremental Learning with Memory: Theory and Algorithm

Haizhou Shi, Hao Wang

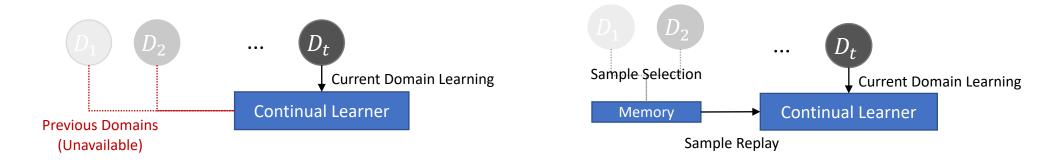
Computer Science Department, Rutgers University

Background

- Domain Incremental Learning (DIL)
 - Machine learning models are required to incrementally learn the evolving data distributions.
 - E.g., autonomous driving under different weather conditions.

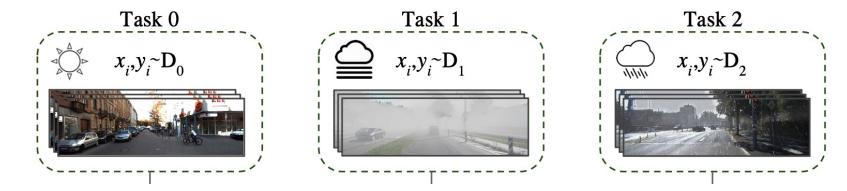


• Memory constraint: no (or very limited size of) the past data can be stored during training.



Background

- Domain Incremental Learning (DIL)
 - Machine learning models are required to incrementally learn the evolving data distributions.
 - E.g., autonomous driving under different weather conditions.

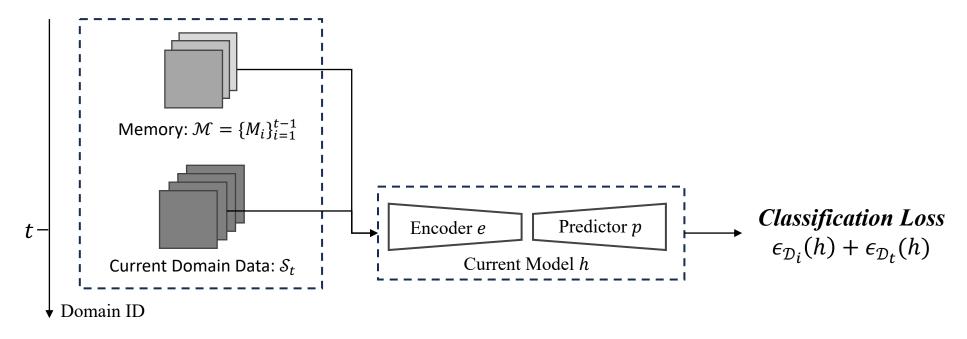


- Memory constraint: no (or very limited size of) the past data can be stored during training.
- Goal of DIL: minimize the model's risk over *all domains*.

$$\mathcal{L}^*(\theta) = \mathcal{L}_t(\theta) + \mathcal{L}_{1:t-1}(\theta) = \mathbb{E}_{(x,y)\sim\mathcal{D}_t}[\ell(y,h_{\theta}(x))] + \sum_{i=1}^{t-1} \mathbb{E}_{(x,y)\sim\mathcal{D}_i}[\ell(y,h_{\theta}(x))]$$

ERM-Based Generalization Bound

• Empirical Risk Minimization (ERM) via Experience Replay (ER)

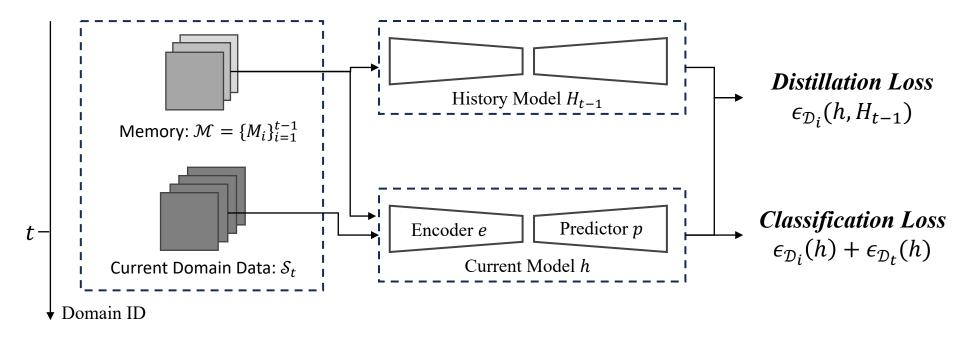


• [Lemma 3.1] Trivially replaying the memory will cause *a loose generalization bound*.

$$\sum_{i=1}^{t} \epsilon_{\mathcal{D}_i}(h) \leq \sum_{i=1}^{t} \widehat{\epsilon}_{\mathcal{D}_i}(h) + \sqrt{\left(\frac{1}{N_t} + \sum_{i=1}^{t-1} \frac{1}{\widetilde{N}_i}\right) \left(8d \log\left(\frac{2eN}{d}\right) + 8\log\left(\frac{2}{\delta}\right)\right)}.$$

Intra-Domain Model-Based Bound

• Dark Experience Replay (DER++)

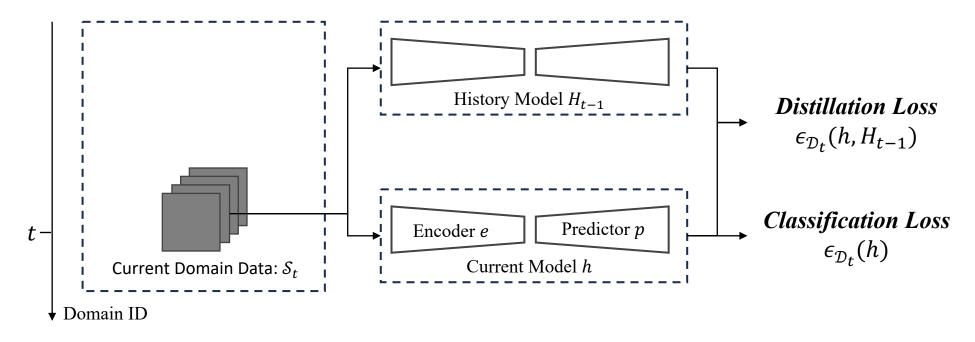


• [Lemma 3.2] Intra-Domain Model-Based Bound

$$\epsilon_{\mathcal{D}_i}(h) \le \epsilon_{\mathcal{D}_i}(h, H_{t-1}) + \epsilon_{\mathcal{D}_i}(H_{t-1}),$$

Cross-Domain Model-Based Bound

• Learning without Forgetting (LwF)

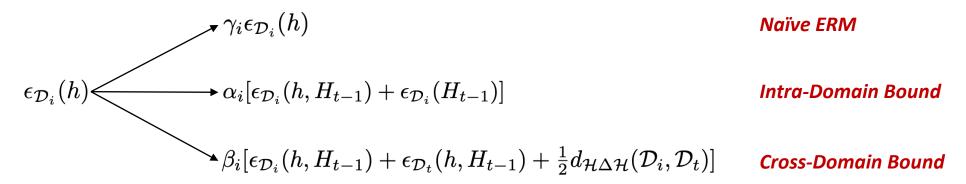


• [Lemma 3.3] Cross-Domain Model-Based Bound

$$\epsilon_{\mathcal{D}_i}(h) \le \epsilon_{\mathcal{D}_t}(h, H_{t-1}) + \frac{1}{2}d_{\mathcal{H}\Delta\mathcal{H}}(\mathcal{D}_i, \mathcal{D}_t) + \epsilon_{\mathcal{D}_i}(H_{t-1}),$$

UDIL: A Unified Bound for DIL

• A set of coefficients $\{\alpha_i, \beta_i, \gamma_i\}_{i=1}^{t-1}$ (with $\alpha_i + \beta_i + \gamma_i = 1$) integrates them into one unified bound.



• [Theorem 3.4] Unified Generalization Bound for all domains

$$\sum_{i=1}^{t} \epsilon_{\mathcal{D}_{i}}(h) \leq \left\{ \sum_{i=1}^{t-1} \left[\gamma_{i} \widehat{\epsilon}_{\mathcal{D}_{i}}(h) + \alpha_{i} \widehat{\epsilon}_{\mathcal{D}_{i}}(h, H_{t-1}) \right] \right\} + \left\{ \widehat{\epsilon}_{\mathcal{D}_{t}}(h) + (\sum_{i=1}^{t-1} \beta_{i}) \widehat{\epsilon}_{\mathcal{D}_{t}}(h, H_{t-1}) \right\}
+ \frac{1}{2} \sum_{i=1}^{t-1} \beta_{i} d_{\mathcal{H}\Delta\mathcal{H}}(\mathcal{D}_{i}, \mathcal{D}_{t}) + \sum_{i=1}^{t-1} (\alpha_{i} + \beta_{i}) \epsilon_{\mathcal{D}_{i}}(H_{t-1})
+ \sqrt{\left(\frac{(1 + \sum_{i=1}^{t-1} \beta_{i})^{2}}{N_{t}} + \sum_{i=1}^{t-1} \frac{(\gamma_{i} + \alpha_{i})^{2}}{\widetilde{N}_{i}} \right) \left(8d \log \left(\frac{2eN}{d} \right) + 8 \log \left(\frac{2}{\delta} \right) \right)}$$

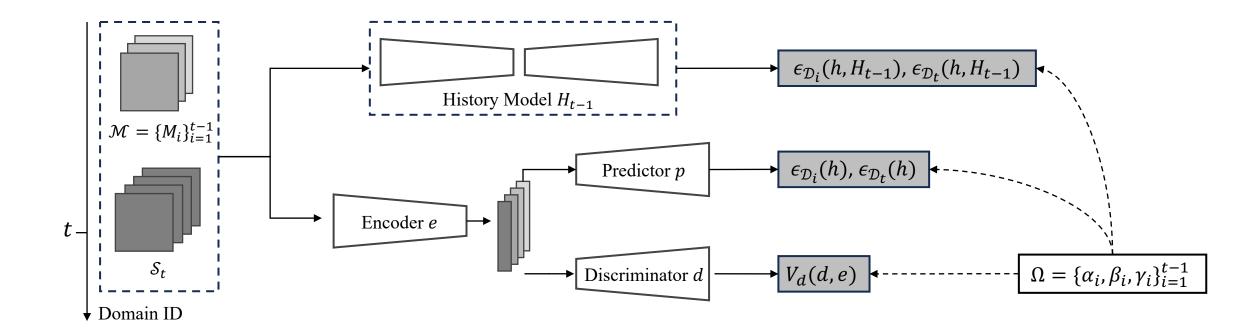
UDIL: A Unified Bound for DIL

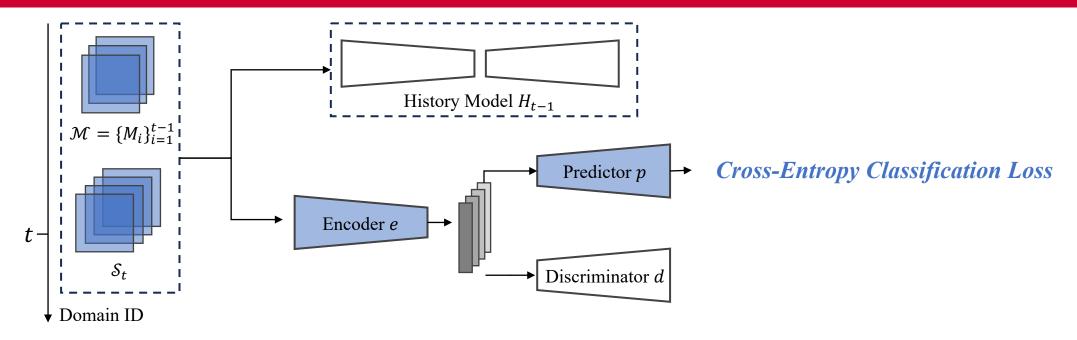
• UDIL unifies multiple existing methods under certain conditions.

	$\mid \; lpha_i \;$	eta_i	γ_i	Transformed Objective	Condition
UDIL (Ours)	[0,1]	[0, 1]] [0, 1]	-	-
LwF [52]	0	1	0	$\mathcal{L}_{ ext{LwF}}(h) = \widehat{\ell}_{\mathcal{X}_t}(h) + \lambda_o \widehat{\ell}_{\mathcal{X}_t}(h, H_{t-1})$	$\lambda_o = t - 1$
ER [75]	0	0	1	$\mathcal{L}_{ ext{ER}}(h) = \widehat{\ell}_{B_t}(h) + \sum_{i=1}^{t-1} rac{ B_t' /(t-1)}{ B_t } \widehat{\ell}_{B_i'}(h)$	$ B_t = \frac{ B_t' }{(t-1)}$
DER++ [8]	1/2	0	1/2	$\mathcal{L}_{\text{DER++}}(h) = \widehat{\ell}_{B_t}(h) + \frac{1}{2} \sum_{i=1}^{t-1} \frac{\frac{ B_t' /(t-1)}{ B_t }}{ B_t } [\widehat{\ell}_{B_i'}(h) + \widehat{\ell}_{B_i'}(h, H_{t-1})]$	$ B_t = \frac{ B_t' }{(t-1)}$
iCaRL [74]	1	0	0	$\mathcal{L}_{ ext{iCaRL}}(h) = \widehat{\ell'}_{B_t}(h) + \sum_{i=1}^{t-1} rac{ B'_t /(t-1)}{ B_t } \widehat{\ell'}_{B'_i}(h, H_{t-1})$	$ B_t = \frac{ B_t' }{(t-1)}$
CLS-ER [4]	$\frac{\lambda}{\lambda+1}$	0	$\frac{1}{\lambda+1}$	$\mathcal{L}_{ ext{CLS-ER}}(h) = \widehat{\ell}_{B_t}(h) + \sum_{i=1}^{t-1} rac{1}{t-1} \widehat{\ell}_{B_i'}(h) + \sum_{i=1}^{t-1} rac{\lambda}{t-1} \widehat{\ell}_{B_i'}(h, H_{t-1})$	$\lambda = t - 2$
ESM-ER [80]	$\frac{\lambda}{\lambda+1}$	0	$\frac{1}{\lambda+1}$	$\mathcal{L}_{\text{ESM-ER}}(h) = \widehat{\ell}_{B_t}(h) + \sum_{i=1}^{t-1} \frac{1}{r(t-1)} \widehat{\ell}_{B_i'}(h) + \sum_{i=1}^{t-1} \frac{\lambda}{r(t-1)} \widehat{\ell}_{B_i'}(h, H_{t-1})$	$\begin{cases} \lambda = -1 + r(t-1) \\ r = 1 - e^{-1} \end{cases}$
BiC [100]	$\frac{t-1}{2t-1}$	$\frac{t-1}{2t-1}$	$\frac{1}{2t-1}$	$\mathcal{L}_{\text{BiC}}(h) = \widehat{\ell}_{B_t}(h) + \sum_{i=1}^{t-1} \frac{(t-1) B_i }{ B_t } \widehat{\ell}_{B_i'}(h, H_{t-1}) + (t-1)\widehat{\ell}_{B_t}(h, H_{t-1}) + \sum_{i=1}^{t-1} \frac{ B_i }{ B_t } \widehat{\ell}_{B_i'}(h)$	$ B_i = B_t $

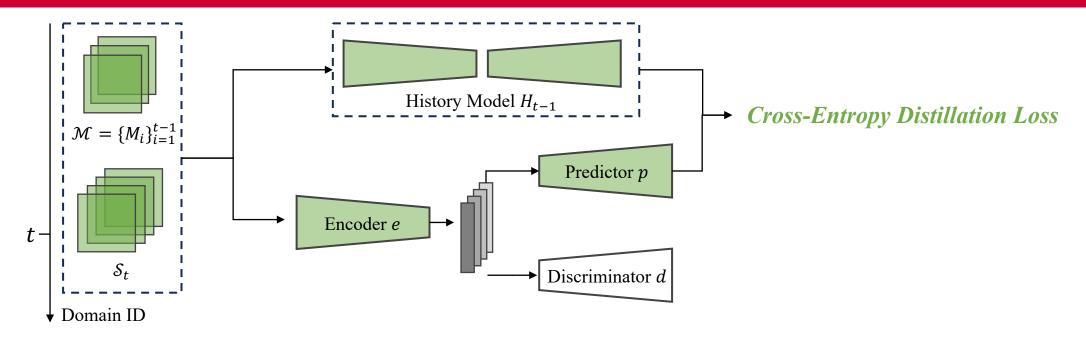
9

- UDIL can *adaptively* adjust the coefficients based on the data and the history model H_{t-1} .
- It will, ideally, minimize the *tightest bound* in the family of all the generalization bounds.

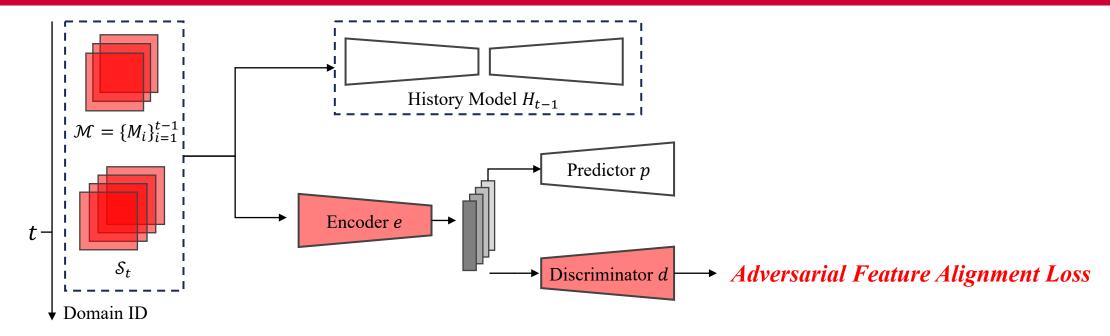




$$\sum_{i=1}^{t} \epsilon_{\mathcal{D}_{i}}(h) \leq \left\{ \sum_{i=1}^{t-1} \left[\underbrace{\gamma_{i} \hat{\epsilon}_{\mathcal{D}_{i}}(h)}_{\gamma_{i} \hat{\epsilon}_{\mathcal{D}_{i}}(h)} + \alpha_{i} \hat{\epsilon}_{\mathcal{D}_{i}}(h, H_{t-1}) \right] \right\} + \left\{ \underbrace{\hat{\epsilon}_{\mathcal{D}_{t}}(h)}_{i=1} + \left(\sum_{i=1}^{t-1} \beta_{i} d_{\mathcal{H}\Delta\mathcal{H}}(\mathcal{D}_{i}, \mathcal{D}_{t}) + \sum_{i=1}^{t-1} (\alpha_{i} + \beta_{i}) \epsilon_{\mathcal{D}_{i}}(H_{t-1}) \right) + \sqrt{\left(\frac{(1 + \sum_{i=1}^{t-1} \beta_{i})^{2}}{N_{t}} + \sum_{i=1}^{t-1} \frac{(\gamma_{i} + \alpha_{i})^{2}}{\tilde{N}_{i}} \right) \left(8d \log \left(\frac{2eN}{d} \right) + 8 \log \left(\frac{2}{\delta} \right) \right)}$$



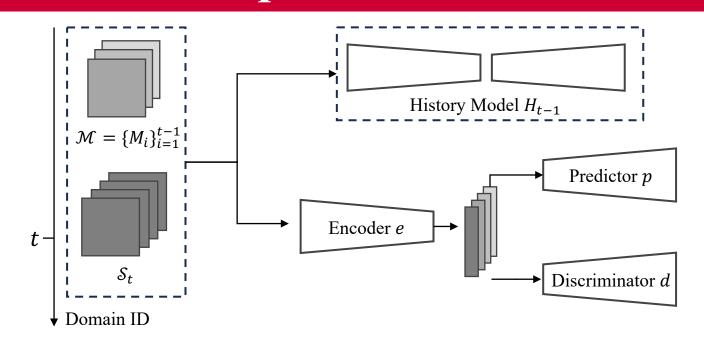
$$\sum_{i=1}^{t} \epsilon_{\mathcal{D}_{i}}(h) \leq \left\{ \sum_{i=1}^{t-1} \left[\gamma_{i} \widehat{\epsilon}_{\mathcal{D}_{i}}(h) + \alpha_{i} \widehat{\epsilon}_{\mathcal{D}_{i}}(h, H_{t-1}) \right] \right\} + \left\{ \widehat{\epsilon}_{\mathcal{D}_{t}}(h) + \left(\sum_{i=1}^{t-1} \beta_{i} \right) \widehat{\epsilon}_{\mathcal{D}_{t}}(h, H_{t-1}) \right\}
+ \frac{1}{2} \sum_{i=1}^{t-1} \beta_{i} d_{\mathcal{H}\Delta\mathcal{H}}(\mathcal{D}_{i}, \mathcal{D}_{t}) + \sum_{i=1}^{t-1} (\alpha_{i} + \beta_{i}) \epsilon_{\mathcal{D}_{i}}(H_{t-1})
+ \sqrt{\left(\frac{(1 + \sum_{i=1}^{t-1} \beta_{i})^{2}}{N_{t}} + \sum_{i=1}^{t-1} \frac{(\gamma_{i} + \alpha_{i})^{2}}{\widetilde{N}_{i}} \right) \left(8d \log \left(\frac{2eN}{d} \right) + 8 \log \left(\frac{2}{\delta} \right) \right)}$$

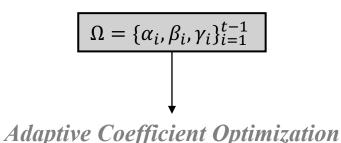


$$\sum_{i=1}^{t} \epsilon_{\mathcal{D}_{i}}(h) \leq \left\{ \sum_{i=1}^{t-1} \left[\gamma_{i} \widehat{\epsilon}_{\mathcal{D}_{i}}(h) + \alpha_{i} \widehat{\epsilon}_{\mathcal{D}_{i}}(h, H_{t-1}) \right] \right\} + \left\{ \widehat{\epsilon}_{\mathcal{D}_{t}}(h) + (\sum_{i=1}^{t-1} \beta_{i}) \widehat{\epsilon}_{\mathcal{D}_{t}}(h, H_{t-1}) \right\}$$

$$+ \frac{1}{2} \sum_{i=1}^{t-1} \beta_{i} d_{\mathcal{H} \Delta \mathcal{H}}(\mathcal{D}_{i}, \mathcal{D}_{t}) + \sum_{i=1}^{t-1} (\alpha_{i} + \beta_{i}) \epsilon_{\mathcal{D}_{i}}(H_{t-1})$$

$$+ \sqrt{\left(\frac{(1 + \sum_{i=1}^{t-1} \beta_{i})^{2}}{N_{t}} + \sum_{i=1}^{t-1} \frac{(\gamma_{i} + \alpha_{i})^{2}}{\widetilde{N}_{i}} \right) \left(8d \log \left(\frac{2eN}{d} \right) + 8 \log \left(\frac{2}{\delta} \right) \right)}$$

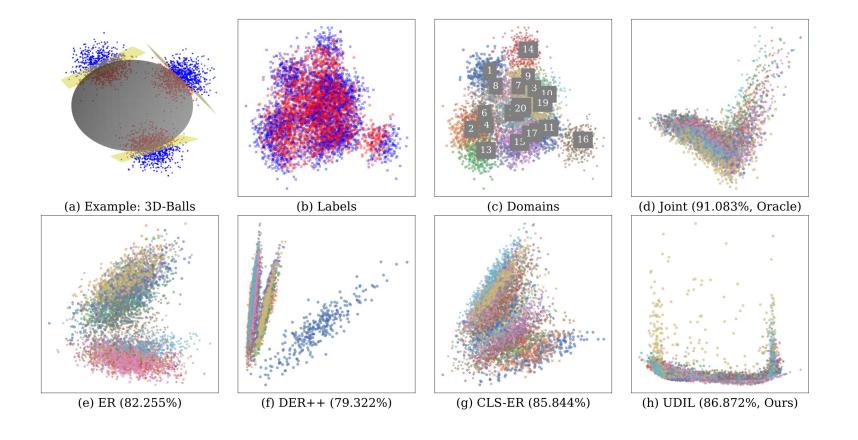




$$\sum_{i=1}^{t} \epsilon_{\mathcal{D}_{i}}(h) \leq \left\{ \sum_{i=1}^{t-1} \left[\gamma_{i} \widehat{\epsilon}_{\mathcal{D}_{i}}(h) + \alpha_{i} \widehat{\epsilon}_{\mathcal{D}_{i}}(h, H_{t-1}) \right] \right\} + \left\{ \widehat{\epsilon}_{\mathcal{D}_{t}}(h) + (\sum_{i=1}^{t-1} \beta_{i}) \widehat{\epsilon}_{\mathcal{D}_{t}}(h, H_{t-1}) \right\}
+ \frac{1}{2} \sum_{i=1}^{t-1} \beta_{i} d_{\mathcal{H}\Delta\mathcal{H}}(\mathcal{D}_{i}, \mathcal{D}_{t}) + \left[\sum_{i=1}^{t-1} (\alpha_{i} + \beta_{i}) \epsilon_{\mathcal{D}_{i}}(H_{t-1}) \right]
+ \sqrt{\left(\frac{(1 + \sum_{i=1}^{t-1} \beta_{i})^{2}}{N_{t}} + \sum_{i=1}^{t-1} \frac{(\gamma_{i} + \alpha_{i})^{2}}{\widetilde{N}_{i}} \right) \left(8d \log \left(\frac{2eN}{d} \right) + 8 \log \left(\frac{2}{\delta} \right) \right)}$$

UDIL: Experimental Results

• UDIL's representation distribution on synthetic dataset (high-dimensional balls)



UDIL: Experimental Results

• UDIL evaluated on realistic datasets.

HD-Balls, Permuted-MNIST, Rotated-MNIST

Method	Buffer	HD-Balls		P-MNIST		R-MNIST	
Method	Duller	Avg. Acc (†)	Forgetting (\psi)	Avg. Acc (†)	Forgetting (\psi)	Avg. Acc (†)	Forgetting (\psi)
Fine-tune	-	52.319 ± 0.024	43.520±0.079	70.102 ± 2.945	27.522±3.042	47.803±1.703	52.281±1.797
oEWC [47]	-	54.131 ± 0.193	39.743 ± 1.388	78.476 ± 1.223	18.068 ± 1.321	48.203 ± 0.827	51.181 ± 0.867
SI [60]	-	52.303 ± 0.037	43.175 ± 0.041	79.045 ± 1.357	17.409 ± 1.446	48.251 ± 1.381	51.053 ± 1.507
LwF [26]	-	51.523 ± 0.065	25.155 ± 0.264	73.545 ± 2.646	$24.556{\scriptstyle\pm2.789}$	$54.709{\scriptstyle\pm0.515}$	45.473 ± 0.565
GEM [31]		69.747 ± 0.656	13.591 ± 0.779	89.097 ± 0.149	6.975 ± 0.167	$76.619{\scriptstyle\pm0.581}$	21.289±0.579
A-GEM [7]		62.777 ± 0.295	$12.878{\scriptstyle\pm1.588}$	87.560 ± 0.087	8.577 ± 0.053	59.654 ± 0.122	39.196 ± 0.171
ER [42]		82.255 ± 1.552	9.524 ± 1.655	88.339 ± 0.044	7.180 ± 0.029	76.794 ± 0.696	20.696 ± 0.744
DER++ [5]	400	79.332 ± 1.347	13.762 ± 1.514	92.950 ± 0.361	3.378 ± 0.245	84.258 ± 0.544	13.692 ± 0.560
CLS-ER [2]		85.844 ± 0.165	5.297 ± 0.281	91.598 ± 0.117	3.795 ± 0.144	81.771 ± 0.354	15.455 ± 0.356
ESM-ER [46]]	71.995 ± 3.833	13.245 ± 5.397	89.829 ± 0.698	6.888 ± 0.738	82.192 ± 0.164	16.195 ± 0.150
UDIL (Ours)		86.872 ± 0.195	3.428 ± 0.359	92.666 ± 0.108	2.853 ± 0.107	86.635 ± 0.686	8.506 ±1.181
Joint (Oracle)) ∞	91.083 ± 0.332	-	96.368 ± 0.042	-	97.150±0.036	-

UDIL: Experimental Results

• UDIL evaluated on realistic datasets.

Sequential CORe-50

Method	Buffer	$\mathcal{D}_{1:3}$	$\mathcal{D}_{4:6}$	$\mathcal{D}_{7:9}$	$\mathcal{D}_{10:11}$	Overall	
Method		Avg. Acc (†)			Avg. Acc (†)	Forgetting (\psi)	
Fine-tune	-	73.707 ± 13.144	34.551±1.254	29.406±2.579	28.689±3.144	31.832±1.034	73.296±1.399
oEWC [51]	-	74.567 ± 13.360	35.915 ± 0.260	30.174 ± 3.195	28.291 ± 2.522	30.813 ± 1.154	74.563 ± 0.937
SI [66]	-	74.661 ± 14.162	34.345 ± 1.001	30.127 ± 2.971	28.839 ± 3.631	32.469 ± 1.315	73.144 ± 1.588
LwF [29]	-	80.383 ± 10.190	$28.357 {\pm} 1.143$	$31.386{\scriptstyle\pm0.787}$	$28.711{\scriptstyle\pm2.981}$	$31.692{\scriptstyle\pm0.768}$	$72.990{\scriptstyle\pm1.350}$
GEM [34]		79.852 ± 6.864	38.961±1.718	39.258±2.614	36.859 ± 0.842	37.701±0.273	22.724±1.554
A-GEM [8]		80.348 ± 9.394	41.472 ± 3.394	43.213 ± 1.542	39.181 ± 3.999	43.181 ± 2.025	33.775 ± 3.003
ER [46]		90.838 ± 2.177	79.343 ± 2.699	68.151 ± 0.226	65.034 ± 1.571	66.605 ± 0.214	32.750 ± 0.455
DER++ [6]	500	92.444 ± 1.764	88.652 ± 1.854	80.391 ± 0.107	78.038 ± 0.591	$78.629 {\pm} 0.753$	21.910 ± 1.094
CLS-ER [3]		89.834 ± 1.323	$\overline{78.909}_{\pm 1.724}$	$\overline{70.591}\pm0.322$	*	*	*
ESM-ER [50]	84.905 ± 6.471	51.905 ± 3.257	53.815 ± 1.770	50.178 ± 2.574	52.751 ± 1.296	25.444 ± 0.580
UDIL (Ours)		$98.152 {\pm} 1.665$	89.814 ± 2.302	$83.052 {\pm} 0.151$	81.547 ± 0.269	82.103 ± 0.279	$19.589 \!\pm\! 0.303$
GEM [34]		78.717±4.831	43.269±3.419	40.908±2.200	40.408±1.168	41.576±1.599	18.537±1.237
A-GEM [8]		78.917 ± 8.984	41.172 ± 4.293	44.576 ± 1.701	38.960 ± 3.867	42.827 ± 1.659	33.800 ± 1.847
ER [46]		90.048 ± 2.699	84.668 ± 1.988	77.561 ± 1.281	72.268 ± 0.720	72.988 ± 0.566	25.997 ± 0.694
DER++ [6]	1000	89.510 ± 5.726	92.492 ± 0.902	88.883 ± 0.794	86.108 ± 0.284	86.392 ± 0.714	13.128 ± 0.474
CLS-ER [3]		92.004 ± 0.894	85.044 ± 1.276	*	*	*	*
ESM-ER [50]	85.120 ± 4.339	54.852 ± 5.511	61.714 ± 1.840	55.098 ± 3.834	58.932 ± 0.959	20.134 ± 0.643
UDIL (Ours)		98.648±1.174	93.447 ± 1.111	90.545 ± 0.705	87.923 ± 0.232	88.155 ± 0.445	$12.882 {\pm} 0.460$
Joint (Oracle)) ∞	-	-)	-	-	99.137±0.049	-

Conclusion

- Proposed a principled framework, UDIL, for domain incremental learning with memory to unify various existing methods.
- Theoretical analysis shows that different existing methods are equivalent to minimizing the same error bound with different *fixed* coefficients.
- UDIL allows *adaptive* coefficients during training, thereby always achieving the tightest bound and improving the performance.

