

NU-MCC: Multiview Compressive Coding with Neighborhood Decoder and Repulsive UDF

Stefan Lionar^{1,2}, Xiangyu Xu^{3*}, Lin Min¹, Gim Hee Lee²

¹Sea AI Lab ²National University of Singapore ³Xi'an Jiaotong University

*Corresponding author. Work was partially done at Sea AI Lab.

NU-MCC: Multiview Compressive Coding with Neighborhood Decoder and Repulsive UDF

Multiview Compressive Coding for 3D Reconstruction (MCC)

Drawback:

- Slow inference speed
- Coarse reconstruction

Wu et al. Multiview Compressive Coding for 3D Reconstruction. CVPR, 2023.

Neighborhood decoder

Standard Unsigned Distance Function (UDF)

Dense points on the surface can be obtained by point-shifting:

$$\mathbf{q} \leftarrow \mathbf{q} - f(\mathbf{q}) \cdot \frac{\nabla_{\mathbf{q}} f(\mathbf{q})}{\|\nabla_{\mathbf{q}} f(\mathbf{q})\|}$$

 $\mathbf{q} =$ sampled 3D location

Chibane et al. Neural Unsigned Distance Fields for Implicit Function Learning. NeurIPS, 2020.

Standard Unsigned Distance Function (UDF)

$$\mathbf{q} \leftarrow \mathbf{q} - f(\mathbf{q}) \cdot \frac{\nabla_{\mathbf{q}} f(\mathbf{q})}{\|\nabla_{\mathbf{q}} f(\mathbf{q})\|}$$

Favor high-curvature regions

Holes artifacts

Repulsive UDF

Repulsive force Surface

(a) Force analysis

(c) Motion field

(d) Point shifting result

Uniform points on the surface

Results

ARCHITECTURE	REPRESENTATION	L_1 -CD \downarrow	F1↑	L_1 -RGB \downarrow	RUNTIME (S) \downarrow
MCC [4]	Occ	0.284	76.4 ¹	0.376	18.5
Ours (no fine)	Occ	0.292	76.8	0.374	1.2
Ours	Occ	0.282	79.0	0.340	1.5
Ours	UDF	0.264	78.2	0.316	3.2
	RepUDF	0.237	83.8	0.320	3.5

Table 1: Quantitative results on CO3D-v2 [5] validation set. Results are obtained using 216k query points and averaged over three different views.

9.7% F1-score improvement >5x faster inference

Results: Zero-shot generalization

Results: Scene

Real Dataset (Taskonomy)

OURS

SEEN

Thank you!

Project page : https://numcc.github.io **Code:** https://github.com/sail-sg/numcc

Project page

Code