Evolutionary Neural Architecture Search for Transformer in Knowledge Tracing

Presenter: Shangshang Yang

Background- KT task

Knowledge Tracing (KT) Task

- KT aims to reveal the student's mastery on each knowledge concept after he/she completed each exercise;
- Existing approaches (based on probabilistic or logistic models and DNNs) solve KT tasks as a sequence prediction task, where student's knowledge states are implicit in the hidden vectors.

岩橋 大學

Motivation & Idea

Research Motivation:

Transformer

- Current KT models directly employ existing DNNs architectures (especially, Transformer-based KT models show significantly good performance), overcome some problems (such as student's forgetting behavior) only from the model inputs (manually fuse inputs);
- Never considering the influence of model architectures to improve performance;
- Besides, existing NAS approaches cannot be directly applied to KT, due to the search space difference.

Strengths:

Significantly **better performance** than other DNN-based KT approaches

Weakness:

- **Manually-selected** input features
- **Simple input fusion** methods (Add, Concat)
- Directly employing vanilla Transformer
- Lacking architecture design for *forgetting*

behavior modeling

Search Space Design

Transformer-based search space

- Introducing convolution operation-based local context modelling : balance attention-based global context modelling, enhance the modelling for different learning behaviors (such as students' forgetting behaviors)
- Replace MHSA and FFN with a global operation module: increase the diversity of contained model architectures
- Design a selective hierarchical input module for **automatically** selecting input features \bullet

Feature 4

Selected

[1,3,4]

Feature 3

Feature 2

Overall Framework

Main strategy:

1. Supernet-based evaluation:

train a super-Transformer for subsequent evaluation, reducing the search cost

2. Search Space Reduction Strategy:

progressively delete some worse operations, accelerating the convergence

• Experiments-overall comparison

Table 1 Overall Performance Comparison in terms of AUC and ACC

Dataset	Metric	DKT	HawkesKT	CT-NCM	SAKT	AKT	SAINT	SAINT+	NAS-Cell	Ours
Param.(M)	EdNet RAIEd2020	$\frac{ 0.13495 }{ 0.13531 }$	0.019578 0.019932	1.9974 2.0431	2.0864 2.1317	1.2330 1.2335	2.7492 2.7945	3.1862 3.2315	1.8692 1.9145	3.8232 4.1262
EdNet	$\begin{vmatrix} \mathbf{RMSE} \downarrow \\ \mathbf{ACC} \uparrow \\ \mathbf{AUC} \uparrow \end{vmatrix}$	0.4653 0.6537 0.6952	$0.4475 \\ 0.6888 \\ 0.7487$	0.4364 0.7063 0.7743	0.4405 0.6998 0.7650	0.4399 0.7016 0.7686	0.4322 0.7132 0.7825	0.4285 0.7188 0.7916	0.4345 0.7143 0.7796	0.4209 0.7295 0.8062
RAIEd2020	$\begin{vmatrix} \mathbf{RMSE} \downarrow \\ \mathbf{ACC} \uparrow \\ \mathbf{AUC} \uparrow \end{vmatrix}$	0.4632 0.6622 0.7108	0.4453 0.6928 0.7525	0.4355 0.7079 0.7771	0.4381 0.7035 0.7693	0.4368 0.7076 0.7752	0.4310 0.7143 0.7862	0.4272 0.7192 0.7934	0.4309 0.7167 0.7839	0.4196 0.7313 0.8089
+/-/ \approx (six results totally) 6/0/0			6/0/0	6/0/0	6/0/0	6/0/0	6/0/0	6/0/0	6/0/0	-

Overall Comparison On two datasets

Experiments- Visualization

Found Architecture Visualization

• Prefer local operations like convolution when close to the input

Some insightful observations

- Prefer global operations (such as MHSA & <u>convolution with larger kernel size</u>) when **close to the output**
- Automatically selected features contain manually-selected features, also contain others

""大学

The selected features in the best-found architecture

Experiments-Ablation study

Effectiveness of the devised modules

Method	RMSE↓ ACC↑ AUC↑
SAINT+	0.4285 0.71880.7916
A: All Features + Concat	0.4276 0.7203 0.7937
B : Selected Features + Concat	0.4262 0.72170.7958
C: Selected Features + Hierarchical	0.4250 0.72360.7987
D : C 's Input + Convolution	0.4235 0.7253 0.8012
E: Ours (without Hierarchical Fusion, with Concat)	0.4223 0.7269 0.8041
F: Ours (without the Selected Features, with All Features)	<u>0.4221</u> <u>0.7260</u> <u>0.8030</u>
G: Ours (without Selected Features & Hierarchical, with SAINT+'s input)	<u>0.4238</u> <u>0.7249</u> <u>0.8008</u>
<i>H</i> : Ours (without the Searched Architecture, with SAINT+'s model), i.e., <i>C</i>	<u>0.4250</u> <u>0.7236</u> <u>0.7987</u>
Searched by ENAS-KT(f) (under a small Supernet with fewer training: embedding size 64, epoch 30), retrain under size 128, taking 9.1 hours totally	0.4224 0.72710.8036
Ours	0.4209 0.7295 0.8062

The followings' effectiveness can be validated:

- The selected (searched) features
- The devised <u>hierarchical input module</u>
- The necessary of <u>introducing convolution</u>
- The devised evolutionary search approach

安翁大學

Effectiveness of search space reduction

The reduction strategy can indeed accelerate the convergence, leading to better convergence results

Thanks!

