
ARP mitigates goal misgeneralization in 3 different 
Procgen test environments.

ARP facilitates spatial generalization in RLBench.

ARP can execute unseen instructions with unseen objs.

Text-conditioned BC with pre-trained VL models is widely 
used for training instruction-following agents with 

Limitation: Prior work focused on providing pre-trained input 
text embeddings as input to the policy.
• Within task, text instruction doesn’t provide a different signal.

• Hard to fully utilize text instruction, inducing poor generalization 
ability (goal misgeneralization [1])

Contribution
• We propose ARP, a novel IL framework that trains a return-

conditioned policy using adaptive multimodal rewards from 
pre-trained encoders.

• We show that ARP can (a) effectively mitigate goal 
misgeneralization and (b) execute unseen text 
instructions associated with useen objects.
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Key Experimental Results
TL;DR:  Imitation Learning framework leveraging visual-text alignment reward for better generalization.

🤔 How can we exploit the text instruction more 
efficiently?
💡Use the similarity between visual observation and text 
instruction as a reward signal.

Given dataset D with N expert state-action trajectories,
Multimodal Reward Label each expert demonstration τ with 
multimodal rewards, defined as CLIP [2] similarity.

Retun-conditioned Policy Train return-conditioned 
transformer (or RNN) using return-labeled dataset D*.

Fine-tuning Pre-trained Encoders Adapt pre-trained CLIP 
models using in-domain expert demonstrations to improve the 
quality of multimodal rewards.

Robust to visual distractions
IDM [4] objective

Temporal Consistency
VIP [3] objective
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