KAKURENBO: Adaptively Hiding Samples in Deep Neural Network Training

Truong Thao Nguyen(*), Balazs (Bali) Gerofi(*)(‡), Edgar Josafat Martinez-Noriega(*), Francois Trahay(+), Mohamed Wahib(*)

National Institute of Advanced Industrial Science and Technology AIST (*) National Institute of Advanced Industrial Science and Technology (AIST), Japan

(4) Télécom SudParis, Institut Polytechnique de Paris, France

([‡]) Intel Corporation ⊎USA

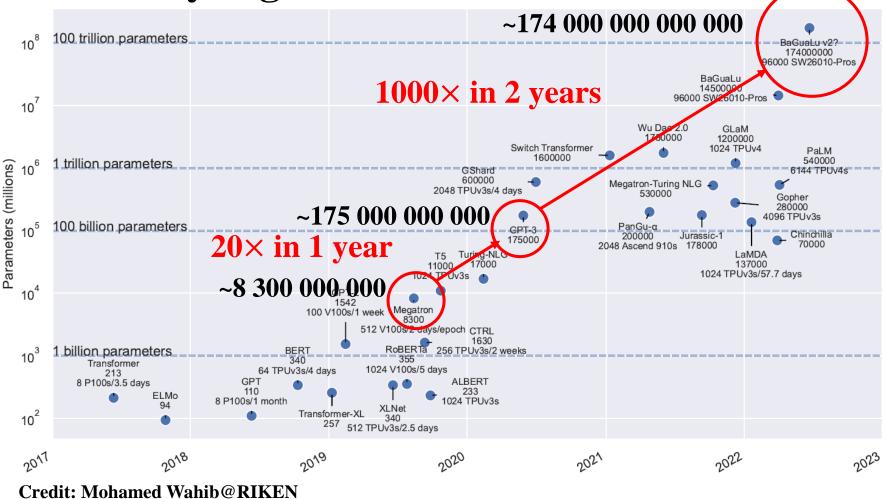
Thirty-seventh Conference on Neural Information Processing Systems (Neurips2023)

Overview

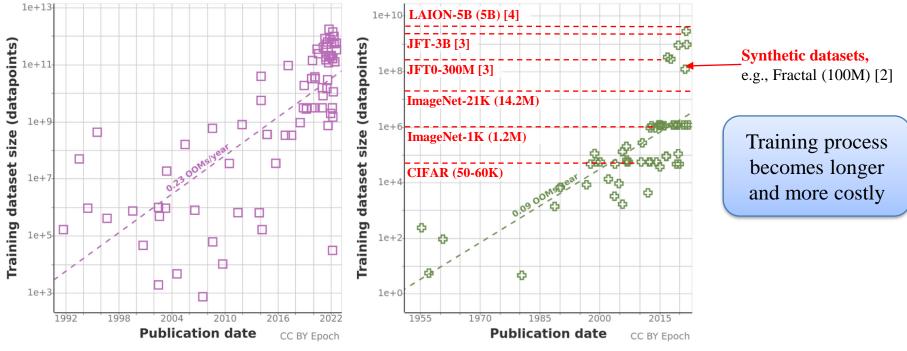
- Explosion of Deep Learning (DL)
 - Effectiveness in a variety of applications
- Training big model on a large dataset become a trend
 - Example: <u>pre-trained Attention-based Models + large dataset</u>
- Drawback:
 - Long training time/cost
 - T5 (\$1.3M), GPT-3 (\$4.6M) AlphaGo (\$35M)
 - Stress non-compute parts of supercomputers
 - Enormous pressure on the I/O subsystem

→ Our Target: Accelerating DNN training, i.e., reducing training time and cost, while maintaining the accuracy

Extremely Big Model



Trends in Training Dataset Sizes



Training datasets for language (left) and vision (right) [1]

Our Target: Accelerating DNN training, i.e., reducing training time and cost, while maintaining the accuracy

Systems 35 (2022)

Research Approaches

Biased with-replacement sampling

- not all samples are of the same importance
- Training with more importance samples can lead to faster convergence

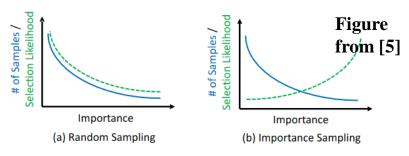
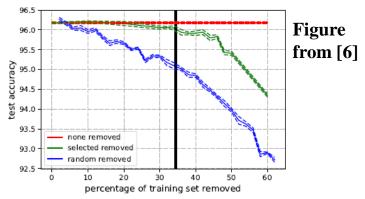


Figure 4: Comparison between (a) random sampling and (b) importance sampling.

Data pruning

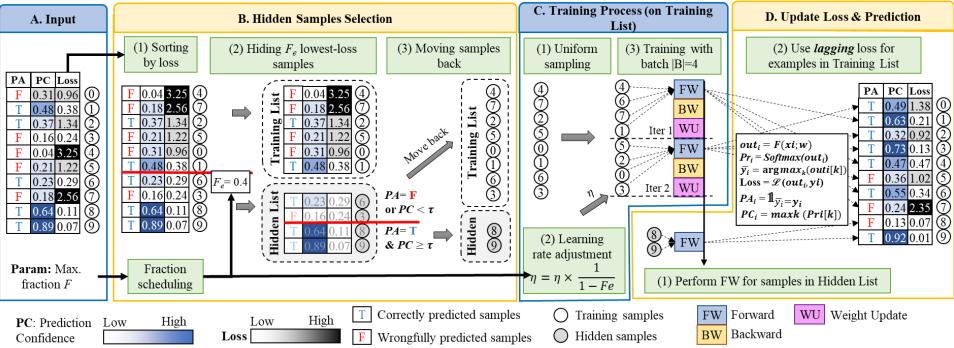
- Prune selected samples from dataset
- Same accuracy when training with pruned dataset

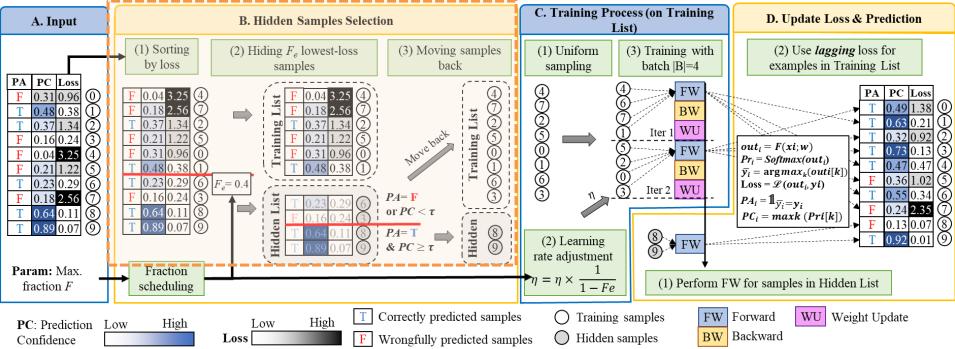


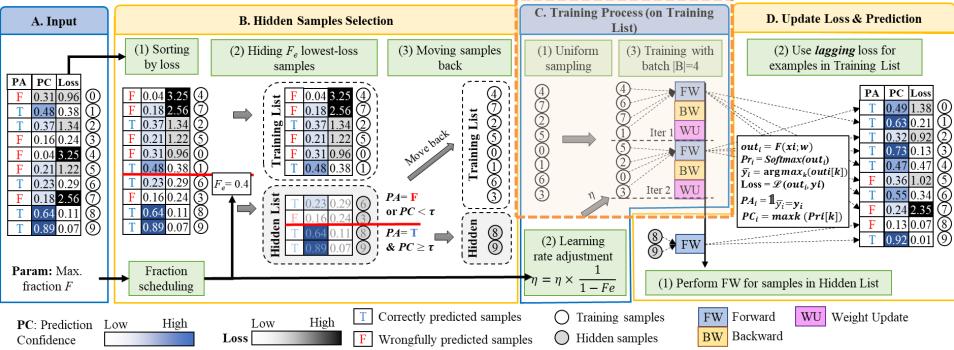
Real-time, adaptively, exclude samples with the least impact from the dataset during the training (Hiding samples)

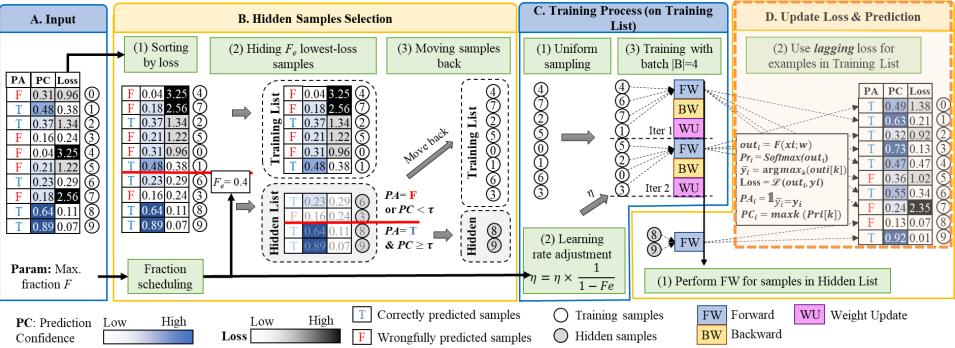
[5] Zeng, Xiao, Ming Yan, and Mi Zhang. "Mercury: Efficient on-device distributed dnn training via stochastic importance sampling." In Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems, pp. 29-41. 2021.

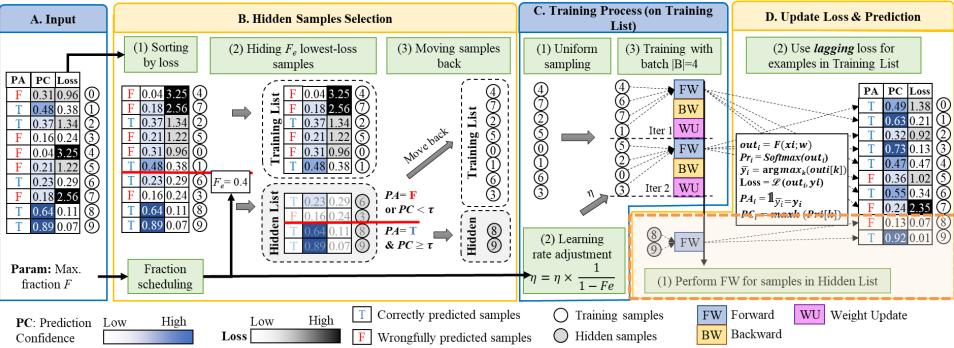
[6] Toneva, Mariya, Alessandro Sordoni, Remi Tachet des Combes, Adam Trischler, Yoshua Bengio, and Geoffrey J. Gordon. "An empirical study of example forgetting during deep neural network learning." arXiv preprint arXiv:1812.05159 (2018).

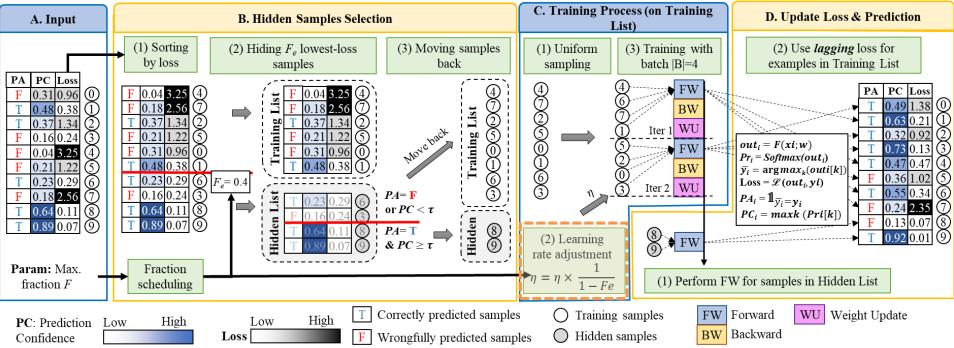


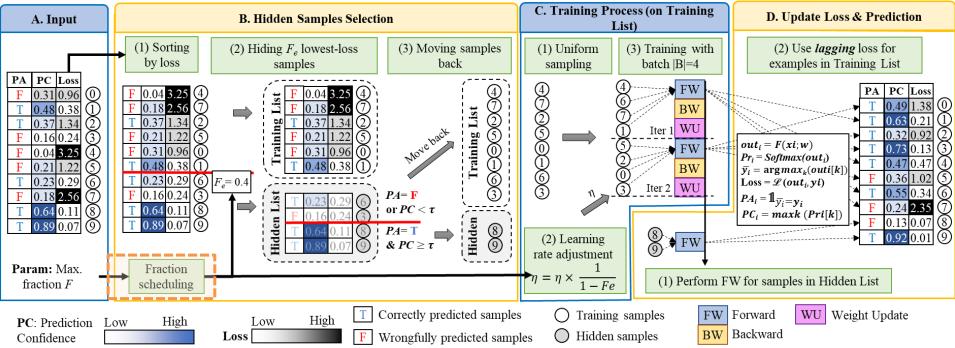












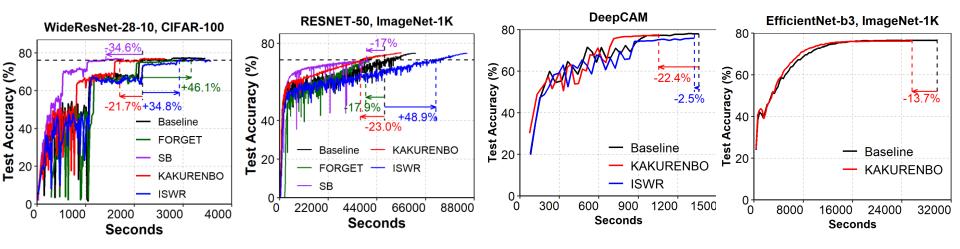
Evaluation Setting

- Strategies:
 - Baseline
 - ISWR: Importance Sampling with Replacement
 - FORGET: pruning technique
 - SB: Selective Backprop
 - KAKURENBO (ours)
- Datasets and Models
- Default setting:
 - F=30%,
 - Threshold $\tau=0.7$

Model	Dataset	#Samples	#Epoch	#GPUs	minibatch (per GPU)	Task	
Resnet50 [36]	ImageNet-1K [19]	1.2M	100	32	64	Image Classification	
EfficientNet-b3 [37]					32		
WideResNet-28-10	CIFAR-100	50K	200	32	32	Image Classification	
[39]	[41]	JUK					
DeepCAM [4]	DeepCAM [4]	~ 122K	35	1024	1	Image Segmentation	
DeiT-Tiny-224 [42]	Fractal-3K [6]	3M	80	32	16		
	(*) CIFAR-10	50K	1000	8	96	Image Classification	
	[41]						
	(*) CIFAR-100	50K	1000	8	96		
[[41]						

 Table 7: Datasets and Models Used in Experiments (* Down-stream training using the pre-trained model).

Evaluation Results



Setting		CIFAR-100 WRN-28-10		ImageNet-1K ResNet-50 Efficier			DeepCAM	
	Acc.	Diff.	Acc.	Diff.	Acc.	Diff.	Acc.	Diff.
Baseline	77.49		74.89		76.63		78.14	
ISWR	76.51	(-0.98)	74.91	(+0.02)	N/A		75.75	(-2.39)
FORGET	76.14	(-1.35)	73.70	(-1.20)	N/A		N/A	
SB	77.03	(-0.46)	71.37	(-3.52)	N/A		N/A	
KAKURENBO	77.21	(-0.28)	75.15	(+0.26)	76.23	(-0.5)	77.42	(-0.9)

Max testing accuracy (Top-1) in percentage of KAKURENBO in the comparison with those of the Baseline and other SOTA methods. Diff. represent the gap to the Baseline.

Impact of KAKURENBO in Transfer Learning

Model: DeiT-Tiny-224 Pretrained with Fractal-3K (3Millions of images)

	Dataset	Metrics	Baseline	ISWR	FORGET	SB	KAKUR.
Up stream	Fractal-3K	Loss	3.26	3.671	3.27	4.18	3.59
		Time (min) Impr.	623	719 (+15.4%)	533 (-14.4%)	414 (-33.5%)	529 (-15.1%)
Down stream	CIFAR-10	Acc. (%) Diff.	95.03	95.79 (+0.76)	95.85 (+0.82)	93.59 (-1.44)	95.28 (+0.25)
	CIFAR-100	Acc. (%) Diff.	79.69	79.62 (-0.07)	79.95 (+0.26)	76.98 (-2.71)	79.35 (-0.34)