Machine learning detects terminal singularities

Tom Coates¹, Alexander M. Kasprzyk², Sara Veneziale¹

¹Imperial College London (UK), ²University of Nottingham (UK)

・ロト ・ 日 ・ ・ 日 ト ・ 日 ・ - 日

Machine Learning for Mathematics

Proposal

An *AI-assisted workflow* for mathematical problems that are **unapproachable** with traditional methods.

The Mathematical Objects

Algebraic geometry is the study of shapes defined by solutions to systems of polynomial equations. They can be **smooth** or **have singularities**.

The Mathematical Objects

Algebraic geometry is the study of shapes defined by solutions to systems of polynomial equations. They can be **smooth** or **have singularities**.

\mathbb{Q} -Fano varieties are the 'atoms' of geometry

They are positively curved shapes with \mathbb{Q} -factorial terminal singularities. Their classification (still open!) is like building a **Periodic Table** for geometry.

Vectorisation

A 2 \times 10 integer-valued matrix

$$\begin{bmatrix} a_1 & \cdots & a_{10} \\ b_1 & \cdots & b_{10} \end{bmatrix}$$

represents \mathbb{C}^{10} with these points identified

$$(z_1,\ldots,z_{10})\sim (\lambda^{a_1}\mu^{b_1}z_1,\ldots,\lambda^{a_{10}}\mu^{b_{10}}z_{10})$$
.

for any $\lambda, \mu \neq 0$. This is a *toric Fano variety* of

- » rank two (# rows),
- » dimension eight (# columns # rows).

Vectorisation

A 2 \times 10 integer-valued matrix

$$\begin{bmatrix} a_1 & \cdots & a_{10} \\ b_1 & \cdots & b_{10} \end{bmatrix}$$

represents \mathbb{C}^{10} with these points identified

$$(z_1,\ldots,z_{10}) \sim (\lambda^{a_1}\mu^{b_1}z_1,\ldots,\lambda^{a_{10}}\mu^{b_{10}}z_{10}).$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

for any $\lambda, \mu \neq 0$. This is a *toric Fano variety* of

- » rank two (# rows),
- » dimension eight (# columns # rows).

Why? To make it challenging

- » There is already a fast criterion for rank one.
- » In low dimensions the problem is easier.

Symmetries

<□> <0</p>
<□> <0</p>
<0</p>

Symmetries

The standard form

$$\begin{bmatrix} a_1 \, a_2 \cdots \, a_{10} \\ 0 \, b_2 \cdots \, b_{10} \end{bmatrix}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

with $a_i, b_i \in \mathbb{Z}_{\geq 0}$, $a_{10} < b_{10}$, and the columns cyclically ordered.

Consequences of the ML Model

The model

A fully connected feedforward neural network predicts terminality with **95% accuracy**. It

▲□▶▲□▶▲□▶▲□▶ □ のQで

- » inspires a new algorithm to test terminality for toric Fanos.
- » allows the **exploration** of the toric \mathbb{Q} -Fano landscape.

The model

A fully connected feedforward neural network predicts terminality with **95% accuracy**. It

- » inspires a new algorithm to test terminality for toric Fanos.
- \gg allows the **exploration** of the toric \mathbb{Q} -Fano landscape.

# Samples	Original Alg	New Alg	ML Model
1	1x	15x	450x
10 000	1x	15x	30 000x
100M ℚ-Fano	300 CPUyrs	20 CPUyrs	120 CPUhrs

▲□▶▲□▶▲□▶▲□▶ □ のQで

Sketching the Landscape

We visualise \mathbb{Q} -Fanos in \mathbb{R}^2 using the growth coefficients of their **quantum period**, a conjectured complete invariant. This would have been **impossible without an ML approach**.

(a) \mathbb{Q} -Fano varieties with rank one; (b) probable \mathbb{Q} -Fano varieties in dimension eight and rank two, coloured by Fano index.