May the Force be with You: Unified Pre-Training for 3D Molecular Conformations

	(rfong buon tran binghong artaland rampi rampragad abaazhang)@gataah adu, gi zhu aka@gmail aam			
	{rfeng, huan.tran, binghong, artoland, rampi.ramprasad, chaozhang}@gatech.edu, qi.zhu.ckc@gmail.com			
Introduction	ET-OREO Pre-training Objective			
 We develop a pre-training method for 3D molecular conformations. 				
 Common pre-training strategy: self-supervised de-noising, such as Pre- training-via-Denoising (Zaidi et al., 2022) and UniMol (Zhou et al., 2022). 	$\mathbb{E}_{x \sim \mathscr{E}} \left[\underbrace{\ \nabla_{\mathbf{r}_{x}} \Phi(\mathbf{r}_{x})\ _{2}^{2}}_{\text{zero-force regularization}} + \underbrace{\mathbb{E}_{\varepsilon \sim \mathscr{N}(0,\sigma^{2})} \left[\ \nabla_{\mathbf{r}_{x}} \Phi(\mathbf{r}_{x} - \varepsilon) - \varepsilon\ _{2}^{2} \right]}_{\text{de-noising equilibrium}} \right] + \mathbb{E}_{x \in \mathscr{S}} \left[\underbrace{\ F(\mathbf{r}_{x}) - \nabla_{\mathbf{r}_{x}} \Phi(\mathbf{r}_{x})\ _{2}^{2}}_{\text{forces optimization}} \right]$			
• De-noising can be thought of an approximation to learning atomic forces. Forces are defined as: $F = -\nabla_x E(x), x$: atomic positions, E: potential energy.	 Assume: Equivariant Transformer Φ, coordinates r_x ∈ R^{n_{atoms}×3.} Non-equilibrium → High energy → DFT Forces 			
 However, this assumption would only be true for equilibrium data, i.e. 3D molecular conformations at zero potential energy. 	 Equilibrium Low energy Zero Forces 			
 A large amount of non-equilibrium data during simulations and optimizations do not fit this description; The approximation is not necessarily accurate and lacks physical information. 	 Why? Pre-train the model with the physics-informed interatomic relations by forces; Unify the training objective for all data with one physical principle; De-noising objective helps explore the potential energy surface. 			
 Furthermore, existing machine learning for molecules predominantly focus on extensive training on a single domain, limiting practical usability and encouraging overfitting. 	 Experiment Results ET-OREO consistently outperforms baseline models in terms of force accuracy, molecular dynamics simulation accuracy, and simulation robustness. 			
 Extension of pre-training to more available data, both equilibrium and off- equilibrium, is largely unexplored. 	$ \begin{array}{ c c c c c c c c c } \hline Molecule & Metric & DimeNet & GemNet-T & GemNet-dT & NequIP & TorchMDNet & ET-ORO & ET-OREO \\ \hline Aspirin & Force (\downarrow) & 10.0 & 3.3 & 5.1 & 2.3 & 7.4 & 4.2 & 1.0 \\ & Stability (\uparrow) & 54_{(12)} & 72_{(50)} & 192_{(132)} & 300_{(0)} & 102_{(45)} & 94_{(42)} & 300_{(0)} \\ & & h(r) (\downarrow) & 0.04_{(0.00)} & 0.04_{(0.02)} & 0.04_{(0.01)} & 0.02_{(0.00)} & 0.04_{(0.00)} & 0.04_{(0.00)} & 0.02_{(0.00)} \\ \hline \end{array} $			
 We incorporate both equilibrium and off-equilibrium data in a unified representation learner by a force-centric training paradigm. 	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
Our Contributions	Stability $h(r)$ $73_{(82)}$ $0.06_{(0.02)}$ $26_{(24)}$ $0.08_{(0.04)}$ $94_{(109)}$ $0.07_{(0.03)}$ $300_{(0)}$ $0.03_{(0.00)}$ $94_{(58)}$ $0.06_{(0.02)}$ $300_{(0)}$ $0.05_{(0.01)}$ Table 2: Simulation results on MD17. For all results, force MAE is reported in the unit of [meV/Å], and stability is reported in the unit of [ps]. The distribution of interatomic distances $h(r)$ MAE is			
 Introduced a novel force-centric pretraining paradigm for molecular conformations, unifying equilibrium and off-equilibrium data. 	unitless. FPS stands for frames per second. For all metrics (\downarrow) indicates the lower the better, and (\uparrow) indicates the higher the better. The first group of methods is taken from [8]. The second group of methods is our new baselines, including TorchMDNet [8], ET-ORO, and ET-OREO. These models share the same architecture and have the same FPS.			
 Developed a model that enhances molecular dynamics (MD) simulations, 	 ET-OREO maintains high force accuracy in molecular dynamics simulations. 			

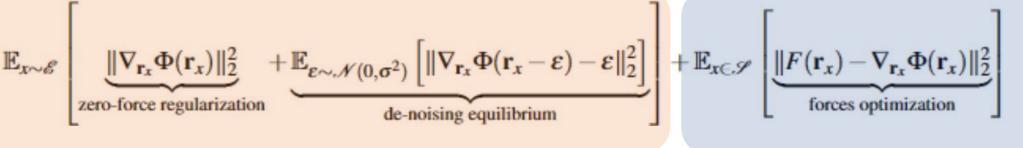
• Provided a diverse set of DFT simulation data for polymers, aiding in the study of polymer properties and molecular forces modeling.

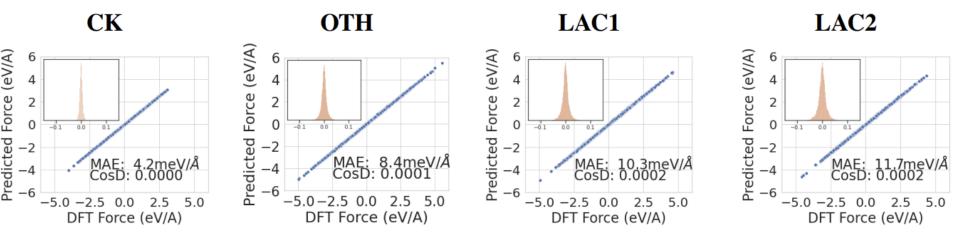
achieving high accuracy and efficient simulation.

Rui Feng*, Qi Zhu**, Huan Tran*, Binghong Chen*, Aubrey Toland*, Rampi Ramprasad*, Chao Zhang*

* Georgia Institute of Technology, Georgia, United States

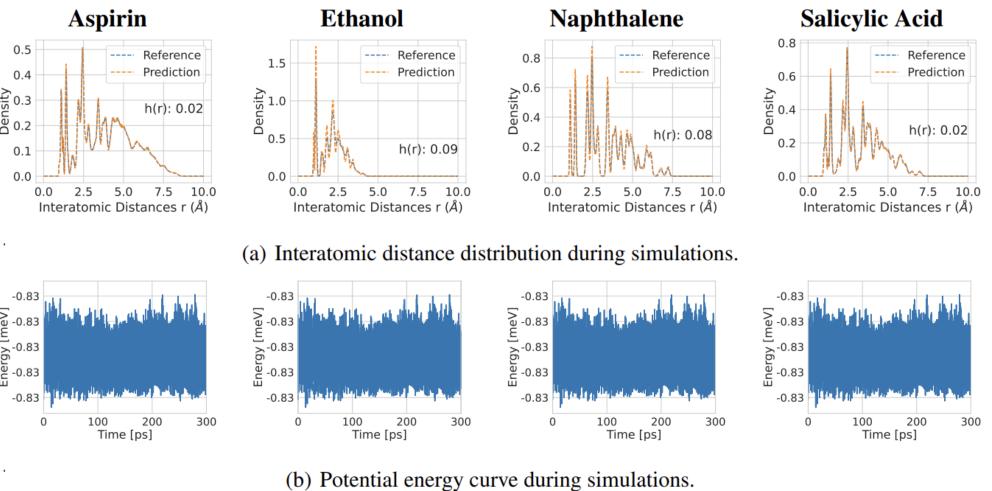
** University of Illinois Urbana-Champaign, Illinois, United States

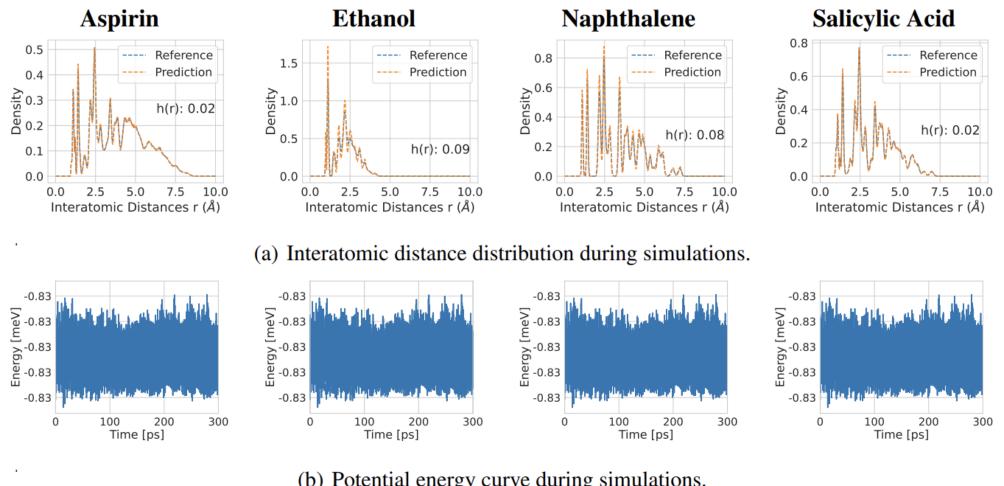




(a) Forces correlation of ET-OREO to DFT forces during simulations.

- Empirically, forces across different datasets calculated different ab initio methods have relatively similar distributions, among other chemical properties.





 \mathcal{E}_{HOM} $\varepsilon_{\rm LUM}$ $\Delta \epsilon$

Table 4: Fine-tuning on HOMO-LUMO properties on QM9. Metrics are MAE in meV.

Dataset	# Conformations	Equilibrium	Off-equilibrium
PCQM4Mv2	3,378,606	- <i>\</i>	×
ANI1x	4,956,005	\checkmark	\checkmark
MD17	3,611,115	×	\checkmark
poly24	3,851,540	×	\checkmark
Total	15,718,279	1	1

Table 1: Datasets used in our model pre-training process.

Nice properties of atomic forces:

– They are physically well-defined observable, i.e., the force acting on an atom is determined solely and uniquely from its local environment, defined as the realspace distribution of its neighboring atoms;

- They are generalizable across various molecules in the sense that atoms from different molecules that have the same local environment should experience the same atomic forces;

– They can unify equilibrium and off-equilibrium data, characterizing the whole landscape of the potential energy surface;

ET-OREO improves property prediction on QM9 by ~30%, on par with NoisyNodes.

MO MO	TorchMDNet 20.3 17.5	NoisyNode 15.6 13.2	ET-OREO 16.8 14.5	Off-equilibrium data helps more with simulation and
	36.1	24.5	26.4	optimization than
	• . • •			property prediction.