

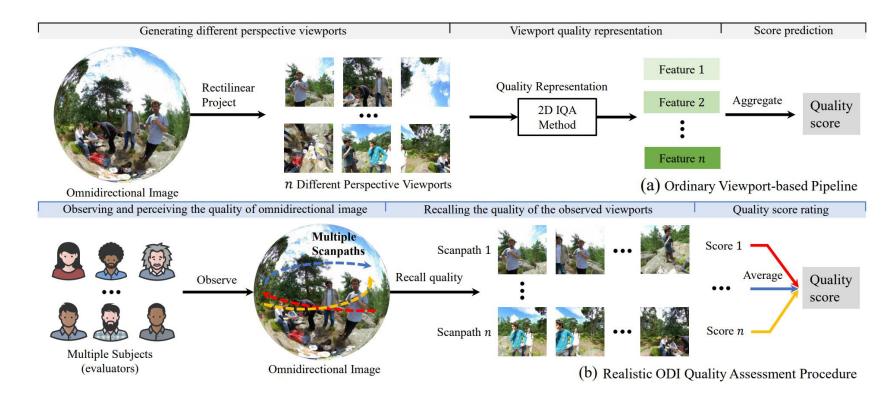
Assessor360: Multi-sequence Network for Blind Omnidirectional Image Quality Assessment

Tianhe Wu^{1,*}, Shuwei Shi^{1,2*}, Haoming Cai³, Mingdeng Cao², Jing Xiao⁴, Yinqiang Zheng², Yujiu Yang^{1†}

¹ Shenzhen International Graduate School, Tsinghua University, ² The University of Tokyo, ³ University of Maryland, College Park, ⁴ Pingan Group

https://github.com/TianheWu/Assessor360

Speaker: Tianhe Wu Email: wth22@mails.tsinghua.edu.cn 2023.11.10

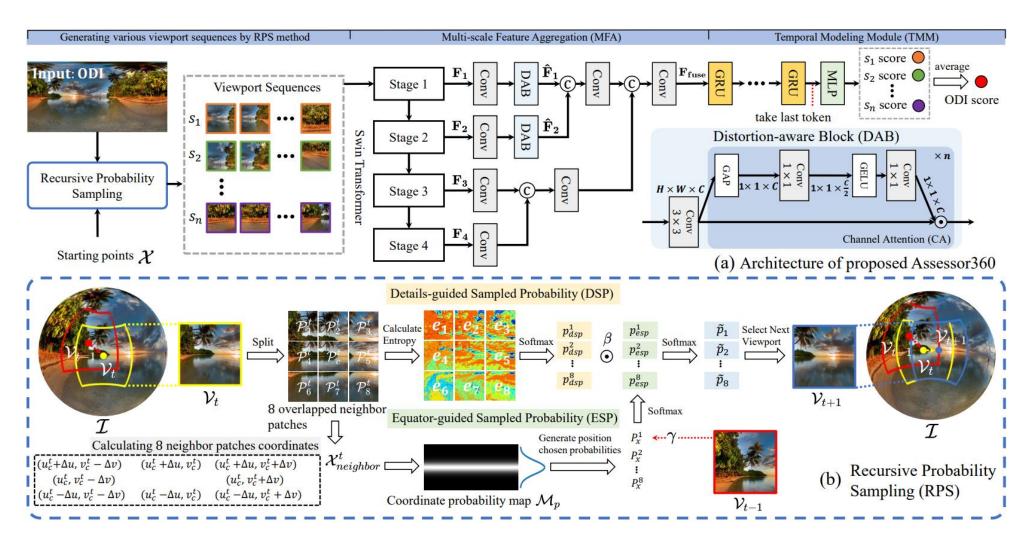


Introduction

- Evaluate the quality of panoramas (VR images)
- Lacks the modeling of the observer's browsing process

- Overall Pipeline
- Generating viewport sequences (step 1)
- Representing distorted features and regressing quality score (step 2 and step 3)

$$Q_{\mathcal{I}} = \frac{1}{N} \sum_{i=1}^{N} \mathcal{H}(\mathcal{F}(\mathcal{G}(\mathcal{I}, \mathcal{X}; \Theta_g); \Theta_f); \Theta_h)$$


- Recursive Probability Sampling
 - Equator-guided Sampled Probability (ESP)
 - Details-guided Sampled Probability (DSP)
- Multi-scale Feature Aggregation
- Temporal Modeling Module

Methods

Performance and Generalization

Table 1: Quantitative comparison of the state-of-the-art methods and proposed Assessor360. The best are shown in **bold**, and the second best (except ours) are <u>underlined</u>. Two baselines w/ ERP and w/ CMP mean that we replace input viewport sequences generated by RPS with ERP and CMP.

Turne	Mathad	MV	AQD	OI	QA	IQA-	-ODI	CV	IQD
Type	Method	SRCC	PLCC	SRCC	PLCC	SRCC	PLCC	SRCC	PLCC
	PSNR	0.8150	0.7591	0.3929	0.3893	0.4018	0.4890	0.8015	0.8425
	SSIM [45]	0.8272	0.7202	0.3402	0.2307	0.5014	0.5686	0.6737	0.7273
	MS-SSIM [46]	0.8032	0.7136	0.5750	0.5084	0.7434	0.8389	0.9218	0.9272
FR-IQA	WS-PSNR [43]	0.8152	0.7638	0.3829	0.3678	0.3780	0.4708	0.8039	0.8410
methods	WS-SSIM [67]	0.8236	0.5328	0.6020	0.3537	0.5325	0.7098	0.8632	0.7672
	VIF [60]	0.8687	0.8436	0.4284	0.4158	0.7109	0.7696	0.9502	0.9370
	DISTS [9]	0.7911	0.7440	0.5740	0.5809	0.8513	0.8723	0.8771	0.8613
	LPIPS [61]	0.8048	0.7336	0.5844	0.4292	0.7355	0.7411	0.8236	0.8242
	NIQE [30]	0.6785	0.6880	0.8539	0.7850	0.6645	0.5637	0.9337	0.8392
	BRISQUE [29]	0.8408	0.8345	0.8213	0.8206	0.8171	0.8651	0.8269	0.8199
	PaQ-2-PiQ [56]	0.3251	0.3643	0.1667	0.2102	0.0201	0.0419	0.7376	0.6500
	MANIQA [54]	0.5531	0.5718	0.4555	0.4171	0.2642	0.2776	0.6013	0.6142
	MUSIQ [22]	0.5436	0.6117	0.3216	0.3087	0.0565	0.0983	0.3483	0.3678
	CLIP-IQA [44]	0.5862	0.4941	0.2330	0.2531	0.0927	0.1929	0.4884	0.4347
	LIQE [63]	0.6837	0.7539	0.7634	0.7419	0.8551	0.9020	0.8594	0.8086
NR-IQA	SSP-BOIQA [64]	0.7838	0.8406	0.8650	0.8600	-	-	0.8614	0.9077
methods	MP-BOIQA [20]	0.8420	0.8543	0.9066	0.9206	-	-	0.9235	0.9390
	MC360IQA [42]	0.6605	0.6977	0.9071	0.8925	0.8248	0.8629	0.8271	0.8240
	SAP-net [52]	-	-	-	-	0.9036	0.9258	-	-
	VGCN [49]	0.8422	0.9112	0.9515	0.9584	0.8117	0.8823	0.9639	0.9651
	AHGCN [16]	-	-	0.9647	0.9682	-	-	$\overline{0.9617}$	0.9658
	baseline w/ ERP	0.9076	0.9240	0.8961	0.8857	0.9098	0.9196	0.9330	0.9485
	baseline w/ CMP	0.8966	0.9324	0.9216	0.9170	0.9105	0.9122	0.9390	0.9412
	Assessor360	0.9607	0.9720	0.9802	0.9747	0.9573	0.9626	0.9644	0.9769

Comparing with SoTA methods

Table 2: Cross-dataset validation SRCC and PLCC results of SOTA methods. These models (except WS-PSNR [43] and WS-SSIM [67]) are trained on CVIQD [41], OIQA [12] and MVAQD [21] datasets (80% set) and tested on three other datasets (full set).

		CVIQD			OIQA			MVAQE)
Method	OIQA	IQA-ODI	MVAQD	CVIQD	IQA-ODI	MVAQD	CVIQD	OIQA	IQA-ODI
					SRCC				
WS-PSNR	0.5027	0.4360	0.7225	0.7638	0.4360	0.7225	0.7638	0.5027	0.4360
WS-SSIM	0.5442	0.5032	0.7930	0.6625	0.5032	0.7930	0.6625	0.5442	0.5032
MC360IQA	0.4189	0.7114	0.0296	0.7044	0.5687	0.4081	0.0373	0.0025	0.0486
VGCN	0.2361	0.2875	0.2452	0.6932	0.3873	0.4682	0.4650	0.6227	0.3921
Assessor360	0.4597	0.8610	0.5640	0.8430	0.8751	0.6417	0.8756	0.7765	0.8646
					PLCC				
WS-PSNR	0.4701	0.5468	0.6962	0.7895	0.5468	0.6962	0.7895	0.4701	0.5468
WS-SSIM	0.4363	0.5941	0.6246	0.6536	0.5941	0.6246	0.6536	0.4363	0.5941
MC360IQA	0.4295	0.7872	0.0404	0.7368	0.5930	0.4238	0.0430	0.0202	0.0646
VGCN	0.2582	0.3127	0.2467	0.5929	0.3551	0.2419	0.3420	0.4642	0.3870
Assessor360	0.5332	0.9032	0.5824	0.8636	0.9137	0.6565	0.7232	0.7287	0.8541

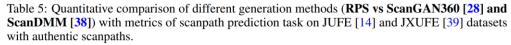

Generalization

Table 3: Cross-dataset validation SRCC results of SOTA methods. These models are trained on MVAQD [21] (full set) and tested on CVIQD [41] and OIQA [12] all distortion data except MP-BOIQA (removing AVC on CVIQD).

Testing set	MC360IQA	MP-BOIQA	Assessor360
OIQA	0.2542	$\frac{0.5043}{0.7992}$	0.6658
CVIQD	0.4749		0.8994

Generalization

Published Time	Generation Method	JUFE [14]			JXUFE [39]		
Published Time	Generation Method	$LEV \downarrow$	$\mathrm{DTW}\!\!\downarrow$	REC↑	$LEV\downarrow$	$\mathrm{DTW}\!\!\downarrow$	REC↑
-	Random Baseline (lower bound)	35.21	1707.45	0.38	35.08	1695.93	0.38
TVCG22	ScanGAN360 [28]	32.53	1448.65	1.07	31.89	1427.55	1.14
CVPR23	ScanDMM [38]	31.23	1434.36	1.21	31.48	1438.29	1.12
-	RPS w/o DSP (Ours)	29.54	1471.82	2.14	29.99	1463.38	1.94
-	RPS (Ours)	29.48	1454.03	2.21	29.66	1422.85	2.07
-	Human Baseline (upper bound)	23.85	1309.29	3.78	26.73	1302.15	2.88

Performance on scanpath prediction task

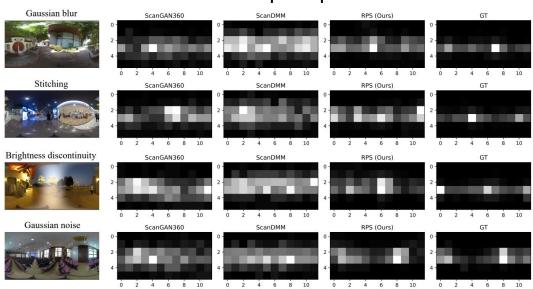


Table 7: Quantitative comparison of using original VGCN sampling method and proposed RPS on IQA-ODI [52] and MVAQD [21] datasets.

Method	IQA-	-ODI	MVAQD		
Wicthod	SRCC	PLCC	SRCC	PLCC	
VGCN	0.8117	0.8823	0.8422	0.9112	
VGCN-RPS	0.8382	0.8883	0.9122	0.9273	

RPS in VGCN method

Table 4: Quantitative comparison of using different viewport sequence generation methods on OIQA [12] and MVAQD [21].

Generation Method	OI	QA	MVAQD		
Generation Method	SRCC	PLCC	SRCC	PLCC	
Random Generation	0.9461	0.9444	0.9359	0.9543	
ScanGAN360	0.9705	0.9670	0.9493	0.9694	
ScanDMM	0.9652	0.9634	0.9558	0.9612	
RPS (Ours)	0.9802	0.9747	0.9607	0.9720	

Different generation methods

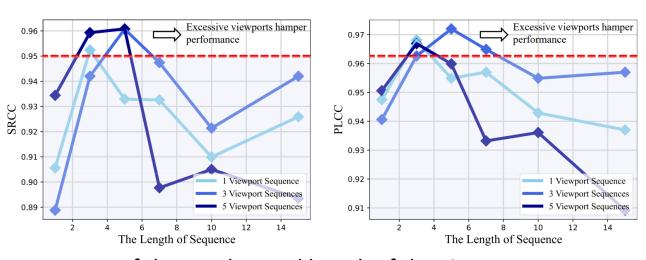
Other Ablation Studies

Table 6: Quantitative comparison of different starting point positions on MVAQD [21] dataset.

Position (latitude, longitude)	SRCC	PLCC
$(0^{\circ}, 0^{\circ}), (0^{\circ}, 0^{\circ}), (0^{\circ}, 0^{\circ})$	0.9607	0.9720
$(60^{\circ}, 0^{\circ}), (60^{\circ}, 0^{\circ}), (60^{\circ}, 0^{\circ})$	0.9106	0.9312
$(0^{\circ}, 120^{\circ}), (0^{\circ}, 0^{\circ}), (0^{\circ}, -60^{\circ})$	0.9599	0.9660
$(60^{\circ}, 120^{\circ}), (60^{\circ}, 0^{\circ}), (60^{\circ}, -60^{\circ})$	0.9174	0.9455

Impact of the initialization of the starting point

Table 8: Ablation studies of each component in proposed Assessor360 on MVAQD [21] dataset.


Method	Para (M)	SRCC	PLCC
Assessor360 w/o MFA	88.53	0.8514	0.9171
Assessor360 w/o DAB	88.86	0.8437	0.8779
Assessor360 w/ GAP	88.69	0.9393	0.9587
Assessor360 w/ GRU	89.28	0.9607	0.9720

Each method component

Table 9: Quantitative comparison of using GT sequences and sequences generated by RPS on JUFE [14] dataset. Starting Point (SP).

Viewport	Goo	d SP	Bad SP		
Sequence	SRCC	PLCC	SRCC	PLCC	
RPS (Ours)	0.6623	0.6365	0.5044	0.4946	
GT Sequence	0.7158	0.7013	0.5400	0.5377	

Comparing with GT sequences

Impact of the number and length of the viewport sequence

 We propose a novel BOIQA network aligning to the realistic observation procedure.

Conclusion

- We propose RPS method which is competitive to the SoTA scanpath prediction methods.
- Our proposed pipeline can provide long-term valuable insights for future OIQA task.

Thanks for your listening

Tianhe Wu^{1,*}, Shuwei Shi^{1,2*}, Haoming Cai³, Mingdeng Cao², Jing Xiao⁴, Yinqiang Zheng², Yujiu Yang^{1†}

¹ Shenzhen International Graduate School, Tsinghua University, ² The University of Tokyo, ³ University of Maryland, College Park, ⁴ Pingan Group

https://github.com/TianheWu/Assessor360

Speaker: Tianhe Wu Email: wth22@mails.tsinghua.edu.cn 2023.11.10