State Regularized Policy Optimization on Data with Dynamics Shift

NeurIPS 2023

Zhenghai Xue¹, Qingpeng Cai², Shuchang Liu², Dong Zheng², Peng Jiang², Kun Gai³, Bo An¹

> ¹Nanyang Technological University, Singapore, ²Kuaishou Technology, ³Unaffliated

Traditional RL algorithms cannot cope with environments with different dynamics.

Original Hopper-v2 environment SAC Policy; Return 3820 Hopper-v2 environment with 0.7x body mass SAC Policy; Return 2274

Context-based algorithms use context encoders to detect dynamic changes.

Problems with context-based algorithms: policies can not learn from data with dynamics shift

We propose the SRPO algorithm that can leverage data with different dynamics.

The key intuition: optimal policies in environments with *different* dynamics can generate a *similar* stationary state distribution.

Incorporate into policy optimization:

$$\max_{\pi} \mathbb{E}_{s_t, a_t \sim \tau_{\pi}} \left[\sum_{t=0}^{\infty} \gamma^t r\left(s_t, a_t\right) \right] \quad \text{s.t.} \quad D_{\text{KL}}\left(d_{\pi}(\cdot) \| \zeta(\cdot) \right) < \varepsilon$$

 d_{π} : the stationary state distribution of the *current* policy ζ : the stationary state distribution of the *optimal* policy

$$\text{Lagrangian:} \quad L = -\mathbb{E}_{s_t, a_t \sim \tau} \left[\sum_{t=0}^{\infty} \gamma^t \left(r(s_t, a_t) + \lambda \log \frac{\zeta(s_t)}{d_{\pi}(s_t)} \right) \right] - \frac{\lambda \varepsilon}{1 - \gamma}$$

Challenges: How to obtain the state probability under the optimal policy? How to compute the probability ratio?

Lagrangian:
$$L = -\mathbb{E}_{s_t, a_t \sim \tau} \left[\sum_{t=0}^{\infty} \gamma^t \left(r(s_t, a_t) + \lambda \log \frac{\zeta(s_t)}{d_{\pi}(s_t)} \right) \right] - \frac{\lambda \varepsilon}{1 - \gamma}$$

Challenges: How to obtain the state probability under the optimal policy? How to compute the probability ratio?

Proposition 3.1. In a GAN, when the real data distribution is $\zeta(s)$ and the generated data distribution is $d_{\pi}(s)$, the output of the discriminator D(s) follows

$$\frac{D(s)}{1-D(s)} = \frac{\zeta(s)}{d_{\pi}(s)}.$$
(4)

Measure the state optimality: an HMM-based approach

$$p(\mathcal{O}_t|s_t) = \max_{a_t} \exp[\gamma^t(r(s_t, a_t) - R_{\max})]$$

In Online RL tasks, we propose the CaDM+SRPO algorithm that can efficiently train a robust policy.

In Offline RL tasks, we propose the MAPLE+SRPO algorithm that reaches the highest performance in 8 of 12 tasks.

	CQL Single	CQL	МОРО	MAPLE	MAPLE +DARA	MAPLE +SRPO(Ours)
Walker2d-medium-expert	1.11	1.03 ± 0.10	0.25±0.18	0.55±0.21	0.80 ± 0.02	$0.66 {\pm} 0.08$
Walker2d-medium	0.79	0.78 ± 0.01	0.23 ± 0.34	$0.82{\pm}0.01$	$0.83 {\pm} 0.03$	0.84 ±0.03
Walker2d-medium-replay	0.27	$0.07{\pm}0.00$	$0.00{\pm}0.00$	0.16 ± 0.02	$0.17 {\pm} 0.01$	$0.17 {\pm} 0.02$
Walker2d-random	0.07	$0.03{\pm}0.01$	$0.00{\pm}0.00$	0.22 ±0.00	0.22 ±0.00	$0.22{\pm}0.00$
Hopper-medium-expert	0.98	$0.32{\pm}0.14$	0.01 ± 0.00	0.96 ± 0.14	$0.96 {\pm} 0.06$	0.98 ±0.02
Hopper-medium	0.58	0.57±0.16	$0.01{\pm}0.00$	0.78 ± 0.28	$0.40{\pm}0.05$	1.03±0.09
Hopper-medium-replay	0.46	$0.14{\pm}0.02$	0.01 ± 0.01	0.91±0.11	1.02 ±0.01	1.02 ±0.01
Hopper-random	0.11	0.11 ± 0.00	0.01 ± 0.00	0.13 ± 0.00	0.13 ± 0.01	0.32 ±0.02
HalfCheetah-medium-expert	0.62	0.03 ± 0.04	-0.03 ± 0.00	$0.50{\pm}0.06$	$0.50{\pm}0.00$	0.63 ±0.01
HalfCheetah-medium	0.44	0.43 ± 0.03	$0.38{\pm}0.28$	$0.62{\pm}0.01$	0.67 ±0.03	$0.63 {\pm} 0.01$
HalfCheetah-medium-replay	0.46	$0.46 {\pm} 0.00$	-0.03 ± 0.00	$0.52{\pm}0.00$	$0.53 {\pm} 0.01$	0.55 ±0.00
HalfCheetah-random	0.35	0.01 ± 0.02	-0.03±0.00	0.22 ± 0.03	0.21 ± 0.00	$0.24{\pm}0.01$
Average	0.52	0.33	0.068	0.53	0.54	0.61

Code: <u>https://github.com/AIDefender/SRPO</u>

Poster Page: https://neurips.cc/virtual/2023/poster/72138

