Implicit Bias of Gradient Descent for Logistic Regression at the Edge of Stability

NeurIPS 2023 Spotlight

Jingfeng Wu (JHU -> Berkeley)

with Vladimir Braverman (Rice) and Jason D. Lee (Princeton)

Gradient Descent

$$
w_{+}=w-\eta \cdot \nabla L(w)
$$

making how much update?
AKA., stepsize / learning rate?

Optimization theory, oversimplified

[descent lemma]

quadratic landscape

For small $\eta, L\left(w_{t}\right)$ decreases monotonically, GD works For large η, GD does not work for quadratics

$$
\begin{aligned}
L\left(w_{+}\right) & =L(w-\eta \cdot \nabla \ell(w)) \\
& =L(w)-\eta \cdot\|\nabla \ell(w)\|^{2}+\frac{\eta^{2}}{2} \cdot \nabla L(w)^{\top} \cdot \nabla^{2} L(w) \cdot \nabla L(w)-O\left(\eta^{3}\right) \\
& \leq L(w)-\eta \cdot\left(1-\frac{\eta}{2} \cdot\left\|\nabla^{2} L(w)\right\|_{2}\right) \cdot\|\nabla L(w)\|^{2}-O\left(\eta^{3}\right)
\end{aligned}
$$

Numbers in DL classification

small stepsize works; large stepsize also works non-monotonically

edge of stability

3-layer net + 1,000 samples from MNIST+ GD with const-stepsize
Cohen, J. M., Kaur, S., Li, Y., Kolter, J. Z., \& Talwalkar, A. (2021). Gradient descent on neural networks typically occurs at the edge of stability. ICLR 2021

Problem simplification

10 classes -> 2 classes NN -> linear model (w/o bias) => logistic regression

- training data $\left(x_{i}, y_{i}=1\right)_{i=1}^{n}$
- Assumption 1: $\exists w,\left\langle w, x_{i}\right\rangle>0, i=1, \ldots, n$
- logistic loss

$$
L(w):=\sum_{i} \log \left(1+\exp \left(-\left\langle w, x_{i}\right\rangle\right)\right)
$$

- constant-stepsize GD

$$
w_{t}=w_{t-1}-\eta \cdot \nabla L\left(w_{t-1}\right)
$$

Key idea: space decomposition

Dual form: $\hat{w}=\alpha_{1} \cdot x_{1}+\ldots+\alpha_{s} \cdot x_{s}$
Orthogonal: $0=\langle v, \hat{w}\rangle$

$$
0=\alpha_{1} \cdot\left\langle v, x_{1}\right\rangle+\ldots+\alpha_{s} \cdot\left\langle v, x_{s}\right\rangle
$$

Assumption 2: supp. vectors span the space Assumption 3: $\alpha_{i}>0$ for supp. vectors

Then there must exist $\left\langle v, x_{i}\right\rangle>0,\left\langle v, x_{j}\right\rangle<0$

Provably convergence under logistic loss

For every constant stepsize $\eta>0$:
A. in the max-margin subspace,
margin

$$
\mathscr{P} \circ w_{t} \geq \frac{1}{\gamma} \cdot \log (t)+\Theta(1)
$$

B. in the non-separable subspace,

$$
\left\|\overline{\mathscr{P}} \circ w_{t}\right\|_{2} \leq \Theta(1)
$$

C. moreover,

$$
G\left(\overline{\mathscr{P}} \circ w_{t}\right)-\min G(\cdot) \leq \frac{\Theta(1)}{\log (t)} \text {, where } G(v):=\sum_{x \in \text { supp. }} \exp (-\langle\overline{\mathscr{P}} \circ x, v\rangle)
$$

$$
L\left(w_{t}\right) \leq \frac{\Theta(1)}{t}
$$

Negative example under exp loss

Consider exp loss on two 2D samples

$$
L(w)=\sum_{i} e^{-\left\langle w, x_{i}\right\rangle} \ll \quad L(v, \bar{v})=e^{-\gamma v-\bar{v}}+e^{-\gamma v+\bar{v}}
$$

Assume that

$$
0 \leq v_{0} \leq 2, \quad\left|\bar{v}_{0}\right| \geq 1,0<\gamma<1 / 4, \eta \geq 4 .
$$

Then
A. $v_{t} \rightarrow \infty$
B. $\left|\bar{v}_{t}\right|>2 \gamma v_{t}$ and \bar{v}_{t} flips sign every iteration
C. $L\left(v_{t}, \bar{v}_{t}\right) \rightarrow \infty$

Non-separable subspace

Feel free to use large stepsizes

 under logistic loss!