

Efficient Test-Time Adaptation for Super-Resolution with Second-Order Degradation and Reconstruction

Zeshuai Deng^{1*}, Zhuokun Chen^{12*}, Shuaicheng Niu^{5*}, Thomas H. Li⁶, Bohan Zhuang^{3†}, Mingkui Tan^{1 2 4†}

¹South China University of Technology, ²Pazhou Lab, ³ZIP Lab, Monash University, ⁴Key Laboratory of Big Data and Intelligent Robot, Ministry of Education, ⁵Nanyang Technological University, ⁶Peking University Shenzhen Graduate School

NeurIPS 2023

Code: https://github.com/DengZeshuai/SRTTA

Background

Methodology

Experimental Results

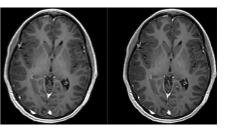
Conclusion

Problem Definition

Super Resolution

Input: Low-resolution image

Output: High-resolution image

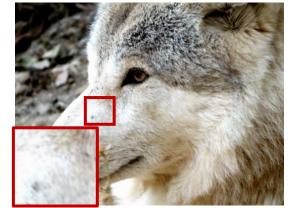


Medical Analysis

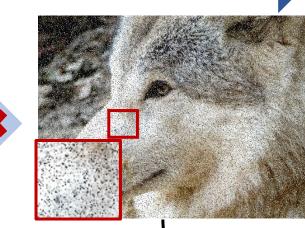
Face Recognition

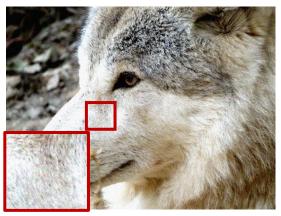
Object Recognition Video Restoration

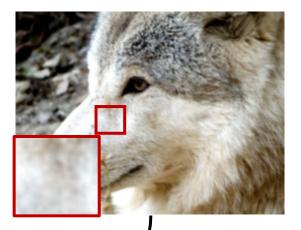
Dynamically changing domain shift



Training







Testing

Domain shift vs. Degradation Shift

Domain Shift

Domain shift refers to the change in data distribution between training and testing

$$\mathcal{D}_{training} \neq \mathcal{D}_{testing} \tag{1}$$

Degradation Shift

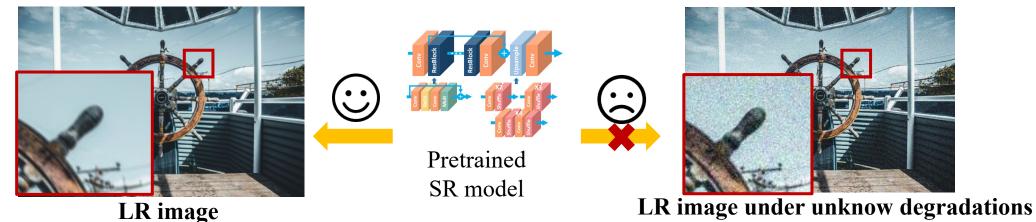
The degradation process of real-world test images can be modeled by a classical degradation model $D(\cdot)$. It can be defined by:

$$\mathbf{x} = \mathbf{D}(\mathbf{y}) = [(\mathbf{y} \otimes \mathbf{k}) \downarrow_s + \mathbf{n}]_{JPEG_q} \quad (2)$$

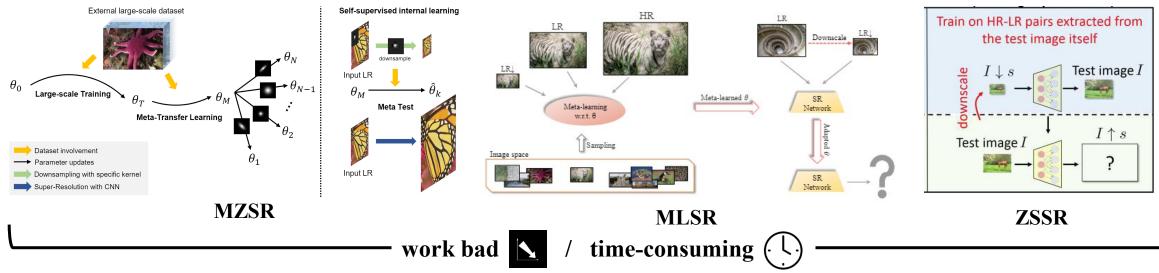
where \otimes denotes the convolution operation, \downarrow_s denotes the downsampling with a scale factor of *s*, and *JPEGq* denotes the JPEG compression with the quality factor *q*

Motivations

Real-world images may exhibit various degradation types due to diverse imaging sensors and multiple Internet transmissions, limiting the performance of pre-trained SR models



It is hard to quickly adapt to dynamically changing domain (degradation shift)



Rethinking

Existing SR methods suffer from two key limitations: low efficiency and narrow focus on a single degradation type

1 How to **quickly** adapt to **unknown domain** during test-time?

2 How to design a **generalized** test-time learning framework?

Methodology

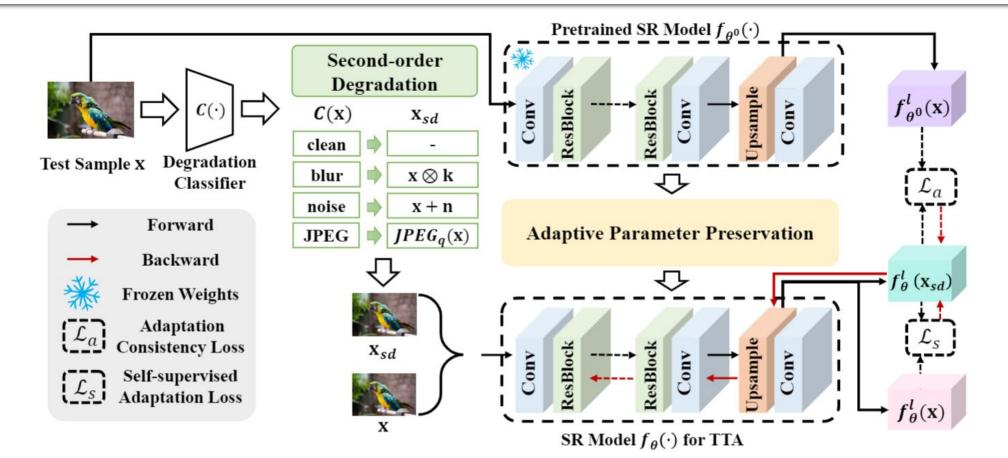
Experimental Results

Conclusion

SRTTA Framework

Our method

• We propose a super-resolution test-time adaptation framework (SRTTA) to adapt a trained super-resolution model to target domains with unknown degradation



SRTTA Pipeline

Algorithm 1: The pipeline of the Super-Resolution Test-Time Adaptation.

Input: Real-world test images $\{\mathbf{x}_t\}_{t=1}^T$, adaptation iteration steps S for each image, learning rate η , batch size N, preservation ratio ρ .

<u>1 Load the pretrained SR models $f_{\theta 0}(\cdot)$ and the degradation classifier $C(\cdot)$.</u>

2 Select and freeze the important parameters using Eqn. (9) with ρ . Our APP strategy

- 3 for \mathbf{x}_t in $\{\mathbf{x}_t\}_{t=1}^T$ do
- 4 **for** s in $\{1, 2, ..., S\}$ **do**
 - Construct paired data $\{\mathbf{x}_{sd}^i, \mathbf{x}_t\}_{i=1}^N$ based on $C(\mathbf{x}_t)$ using Eqn. (3); Adapt the SR model using Eqn. (6) with η ;

Test-time adaptation

7 end

8 end

5

6

Output: The adapted SR model f_{θ} , the predictions $\{\hat{\mathbf{y}}_t = f_{\theta}(\mathbf{x}_t)\}_{t=1}^T$ for all \mathbf{x}_t in $\{\mathbf{x}_t\}_{t=1}^T$.

We use a pre-trained degradation classifier to predict the degradation type C(x) of the test image

- We construct a set of paired data using (Second-order Degradation scheme) and adapt the SR model with our Second-Order Reconstruction loss
- We directly use the frozen pre-trained SR model when test samples are clean images

Motivation of Second-order Degradation

How to quickly identify the type of degradation?

- Existing methods **narrow focus** on blur degradation
- We use a **pre-trained degradation classifier** to quickly recognize more degradation types

How to quickly construct paired data to adapt the SR model the target domain?

- Existing methods often precisely estimate the parameters of the degradation to construct the paired data, which is time-consuming
- We randomly generate parameters of degradations, avoiding estimating degradations

Second-Order Degradation Scheme

Second-Order Degradation

Construct a set of second-order degraded images x_{sd} using Eqn. (3) according to the prediction results of the pre-trained degradation classifier

$$\mathbf{x}_{sd} = D(\mathbf{x}, C(\mathbf{x})) = D_j (D_b(\mathbf{x}, c_b) + D_n(c_n), c_j),$$

$$D_b(\mathbf{x}, c_b) = c_b(\mathbf{x} \otimes \mathbf{k}) + (1 - c_b)\mathbf{x}, \ D_n(c_n) = c_n \mathbf{n},$$

$$D_j(\mathbf{x}, c_j) = c_j JPEG_q(\mathbf{x}) + (1 - c_j)\mathbf{x},$$
(3)

k denotes a random blur kernel, *n* denotes a random noise map, *q* denotes a random quality factor
 Prediction results of the degradation classifier are denoted by *c_b*, *c_n* and *c_i* ∈ {0, 1}

Adaptation with Second-Order Reconstruction

Self-supervised adaptation

Adapt the pre-trained model to remove the degradation using Eqn. (4)

$$\mathcal{L}_s(\mathbf{x}, \mathbf{x}_{sd}) = \sqrt{(f_\theta^l(\mathbf{x}) - f_\theta^l(\mathbf{x}_{sd}))^2 + \epsilon}$$
(4)

• $f_{\theta}^{l}(\cdot)$ denotes the output features of the l_{th} layer of the pre-trained SR model

Consistency maximization

Keep the model consistent across adaptation using Eqn. (5)

$$\mathcal{L}_{a}(\mathbf{x}, \mathbf{x}_{sd}) = \sqrt{(f_{\theta^{0}}^{l}(\mathbf{x}) - f_{\theta}^{l}(\mathbf{x}_{sd}))^{2} + \epsilon}$$
⁽⁵⁾

• $f_{\theta^0}^l(\cdot)$ denotes the output features of the l_{th} layer of the pre-trained SR model

Second-order reconstruction

Keep the model consistent across adaptation using Eqn. (6)

$$\mathcal{L} = \mathcal{L}_s(\mathbf{x}, \mathbf{x}_{sd}) + \alpha \mathcal{L}_a(\mathbf{x}, \mathbf{x}_{sd})$$
(6)

Adaptive Parameter Preservation for Anti-Forgetting

Diagonal Fisher information matrix

Evaluating the importance of each parameters using Eqn. (7) and Eqn. (8)

$$\omega(\theta_i^0) = \frac{1}{|\mathcal{D}_c|} \sum_{\mathbf{x}_c \in \mathcal{D}_c} \left(\frac{\partial \mathcal{L}_c(\mathbf{x}_c)}{\partial \theta_i^0}\right)^2 \tag{7}$$

$$\mathcal{L}_{c}(\mathbf{x}_{c}) = \sqrt{(\bar{\mathbf{y}} - f_{\theta^{0}}(\mathbf{x}_{c}))^{2} + \epsilon}, \quad s.t. \quad \bar{\mathbf{y}} = \frac{1}{8} \sum_{i=1}^{6} \mathbf{R}_{i}(f_{\theta^{0}}(\mathbf{A}_{i}(\mathbf{x}_{c})))$$
(8)

■ D_C denotes a set of clean images, $A_i \in \{A_j\}_{j=1}^8$ denotes an augmentation operation, R_i denotes the inverse operation of A_i

Important Parameter Selection

Select the important parameters using Eqn. (9)

$$\mathcal{S} = \{\theta_i^0 | \omega(\theta_i^0) > \tau_\rho, \theta_i^0 \in \theta^0\}$$
(9)

- τ_{ρ} denotes the first ρ -ratio largest value obtained by ranking the value $\omega(\theta_i^0)$, ρ is a hyperparameter to control the ratio of parameters to be frozen
- We only select the set of significant parameters *S* once

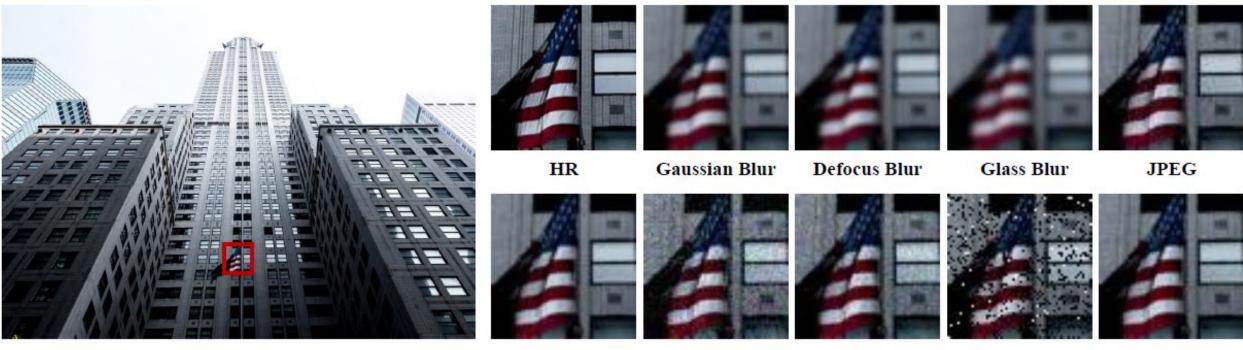
Methodology

Experimental Results

Conclusion

Synthesized Dataset

A new dataset named DIV2K-C consists of **eight** kinds of test images, which includes different degradations



0846 from DIV2K

Clean LR

Gaussian Noise

Poisson Noise

Impulse Noise S

Speckle Noise

Another synthesized dataset named DIV2K-MC consists of **four** kinds of test images, which are synthesized with different **mixed** degradations, including BlurNoise, BlurJPEG, NoiseJPEG and BlurNoiseJPEG

Table A: We report the PSNR/SSIM results of all corruption fields in DIV2K-C for $2 \times$ SR.

Methods	GaussianBlur	DefocusBlur	GlassBlur	GaussianNoise	PossionNoise	ImpulseNoise	SpeckleNoise	JPEG	Mean	GPU Time
	PSNR/SSIM	PSNR/SSIM	PSNR/SSIM	PSNR/SSIM	PSNR/SSIM	PSNR/SSIM	PSNR/SSIM	PSNR/SSIM	PSNR/SSIM	(seconds/image)
Bicubic	28.04/0.803	24.10/0.784	26.31/0.745	25.35/0.554	23.33/0.496	15.28/0.324	28.65/0.774	28.28/0.806	24.92/0.661	-
SwinIR [33]	30.40/0.838	25.52/0.673	27.82/0.773	25.35/0.510	22.36/0.428	15.34/0.242	30.45/0.774	30.74/0.846	26.00/0.636	13.08
IPT [9]	28.93/0.820	24.08/0.640	26.39/0.749	22.96/0.439	20.08/0.369	13.06/0.241	28.27/0.728	28.36/0.804	24.02/0.599	55.36
HAT [10]	29.00/0.821	24.08/0.640	26.40/0.749	22.31/0.417	19.33/0.349	11.91/0.192	28.02/0.722	28.25/0.802	23.66/0.587	25.01
DAN [24]	34.32/0.916	25.58/0.673	<u>31.77/0.872</u>	26.36/0.558	23.28/0.461	11.46/0.203	30.64/0.777	31.08/0.857	26.81/0.665	3.10
DCLS-SR [38]	<u>33.93/0.914</u>	25.55/0.671	31.98/0.872	25.45/0.521	21.59/0.415	8.12/0.112	30.66/0.784	30.86/0.848	26.02/0.642	1.45
ZSSR [48]	29.91/0.831	25.54/0.674	27.79/0.771	26.79/0.590	24.24/0.509	19.14/0.375	30.95/0.813	31.01/0.853	26.92/0.677	117.65
KernalGAN [2]+ZSSR	30.18/0.859	25.87/ <u>0.679</u>	29.01/0.808	21.45/0.436	19.32/0.366	<u>17.93/0.354</u>	25.07/0.686	26.11/0.774	24.37/0.620	231.41
MZSR [11]	30.14/0.838	25.54/0.670	28.03/0.777	25.94/0.543	23.48/0.472	17.05/0.314	30.00/0.771	30.49/0.845	26.33/0.654	3.34
DualSR [14]	29.00/0.854	24.40/0.640	28.18/0.805	22.30/0.509	20.11/0.436	17.22/0.376	24.99/0.738	24.74/0.751	23.87/0.639	210.85
DDNM [56]	28.46/0.808	24.09/0.636	26.39/0.744	24.37/0.497	21.92/0.432	13.98/0.310	28.60/0.753	28.26/0.802	24.51/0.623	2,288.55
EDSR [35]	30.28/0.837	25.52/0.673	27.82/0.773	25.87/0.536	22.96/0.449	15.87/0.269	30.52/0.778	30.83/0.847	26.21/0.645	-
TTA-C	30.21/0.835	25.50/0.673	27.79/0.772	26.37/0.559	23.57/0.473	16.40/0.298	30.25/0.783	30.91/0.849	26.38/0.655	13.59
SRTTA (ours)	31.07/0.869	<u>25.86</u> /0.674	29.01/0.815	29.65/ <u>0.762</u>	26.69/0.637	16.15/0.284	32.33/0.873	31.30/0.857	27.76/0.721	5.38
SRTTA-lifelong (ours)	31.07/0.869	25.83/0.674	29.18/0.819	<u>29.48</u> /0.797	27.10/0.673	16.27/0.273	<u>31.71/0.864</u>	<u>31.22</u> /0.853	<u>27.73</u> /0.728	5.38

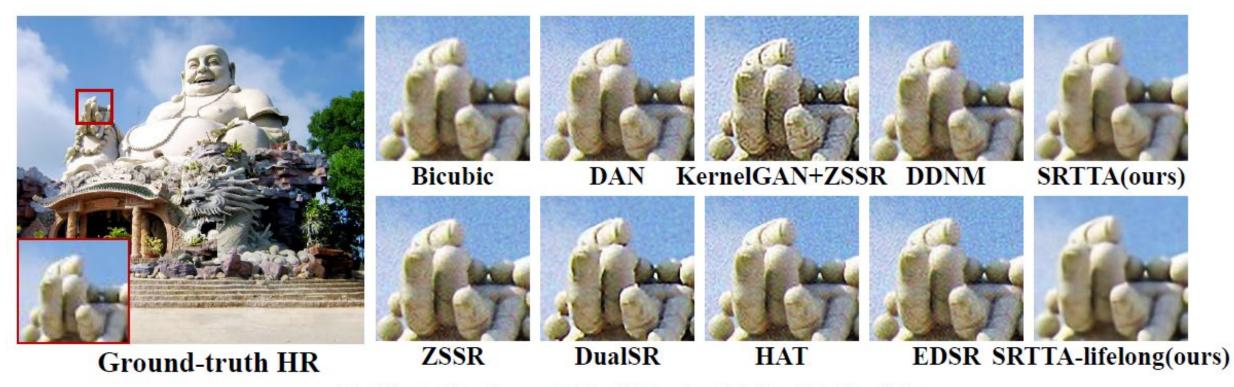
- SRTTA achieves the **best performance** in terms of PSNR and SSIM on average
- SRTTA achieves a better **tradeoff** between **performance** and **efficiency**

Comparison with SOTA on DIV2K-MC

Methods	BlurNoise	BlurJPEG	NoiseJPEG	BlurNoiseJPEG	Mean
SwinIR [15]	20.91/0.311	26.83/0.748	23.86/0.523	22.77/0.450	23.59/0.508
IPT [5]	21.28/0.327	26.83/0.748	24.15/0.535	22.96/0.459	23.81/0.517
HAT [6]	23.41/0.399	28.86/0.788	25.69/0.572	24.42/0.502	25.59/0.565
DAN [12]	24.14/0.438	28.95/0.791	26.20/0.593	24.82/0.519	26.03/0.585
DCLS-SR [18]	23.84/0.420	28.93/0.790	26.37/0.599	24.92/0.523	26.02/0.583
ZSSR [20]	24.95/0.493	29.02/0.793	26.68/0.617	25.24/0.542	26.47/0.611
KernelGAN [1]+ZSSR	23.08/0.424	28.32/0.786	21.90/0.474	22.76/0.443	24.02/0.532
MZSR [7]	18.73/0.213	24.90/0.667	20.37/0.398	20.62/0.354	21.16/0.408
DualSR [8]	25.59/0.561	28.24/0.787	23.78/0.586	24.62/0.541	25.56/0.619
DDNM [24]	22.62/0.389	26.82/0.746	25.11/0.582	23.81/0.504	24.59/0.555
EDSR [16]	24.02/0.430	28.93/0.790	26.08/0.587	24.73/0.514	25.94/0.580
TTA-C	24.29/0.446	28.93/0.790	26.35/0.598	24.91/0.522	26.12/0.589
SRTTA (ours)	26.93/0.709	28.93/ 0.797	29.13/0.784	27.12/0.728	28.03/0.755
SRTTA-lifelong (ours)	27.67/0.749	29.02 /0.793	29.70/0.810	27.52/0.747	28.48/0.775

SRTTA achieves the **best performance** in terms of PSNR and SSIM on average on DIV2K-MC

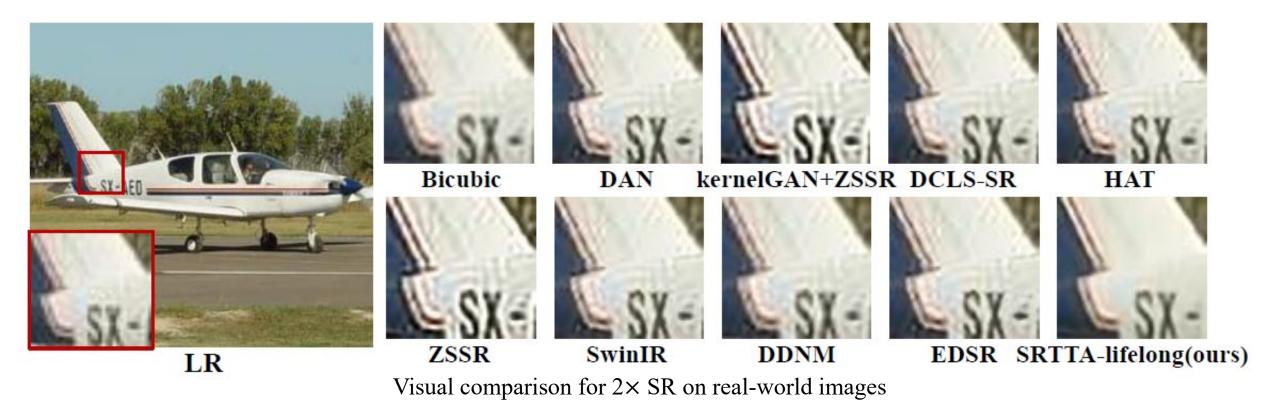
Visual comparison on DIV2K-C



(a) Visualizations under Gaussian Noise for $2 \times SR$

• Our SRTTA is able to reduce the effect of degradation and generate **more plausible HR images**

Visual comparison on real-world images



• Our SRTTA is able to generate HR images with **fewer artifacts**

These results demonstrate that our method is able to be **applied to real-world** applications

Visual comparison on real-world images

Visual comparison for $2 \times$ SR on real-world images

• Our SRTTA is able to generate HR images with **fewer artifacts**

These results demonstrate that our method is able to be **applied to real-world** applications

Methodology

Experimental Results

Conclusion

Conclusion

Conclusion

- We propose a super-resolution test-time adaptation (SRTTA) framework to adapt any pretrained SR models to unknown target domains during the test time
- We use a pre-trained classifier to identify the degradation type for a test image and construct the paired data using our second-order degradation scheme
- We construct new test datasets named DIV2K-C and DIV2K-MC, which contain eight common degradations, to evaluate the practicality of different SR methods

Code: https://github.com/DengZeshuai/SRTTA