

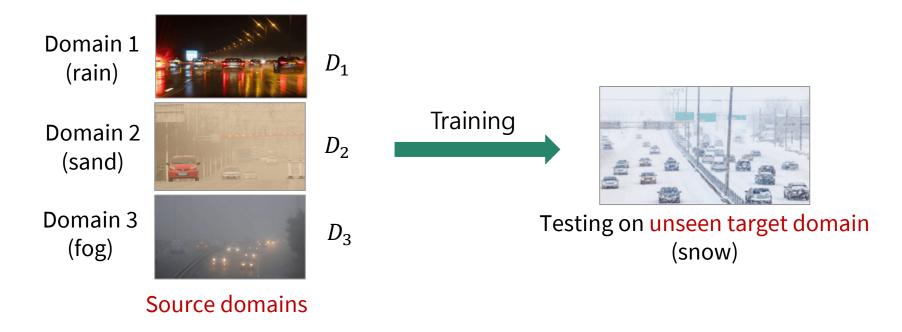
StableFDG: Style and Attention Based Learning for Federated Domain Generalization

Jungwuk Park*, Dong-Jun Han*, Jinho Kim, Shiqiang Wang, Christopher Brinton and Jaekyun Moon

Dec. 2023

Background: Domain Generalization

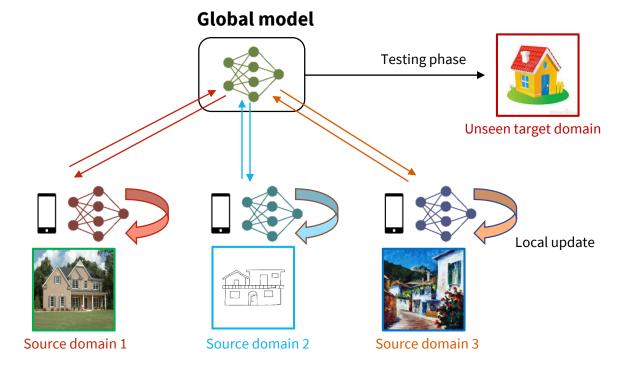
• Goal: Perform well on the unseen domain



- → The target domain is unknown during training.
- → The model should have generalization capability on the unseen domain.
- → Solved via meta-learning, data augmentation, style augmentation ..

Background: Federated Domain Generalization

- In real-world FL scenarios, clients have different domains and the trained global model should predict well on any unseen domains.
- → Raising an important problem: federated domain generalization.

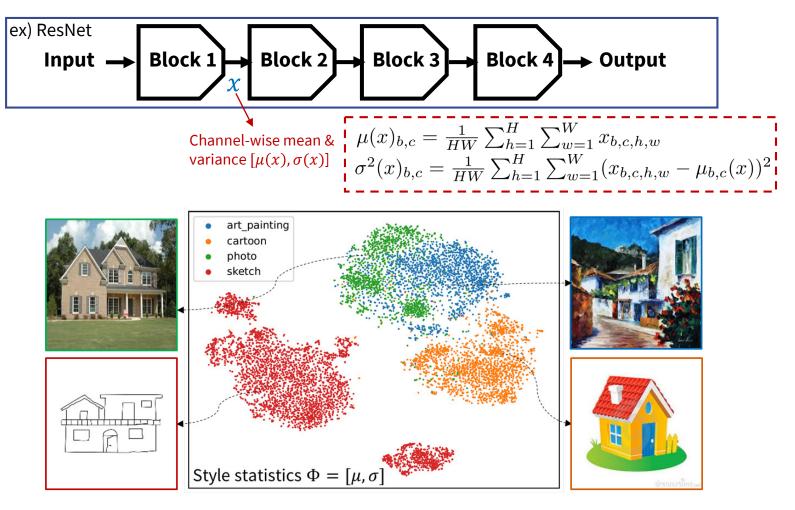


However, federated domain generalization is challenging due to:

→ Limited data/domain in each user.

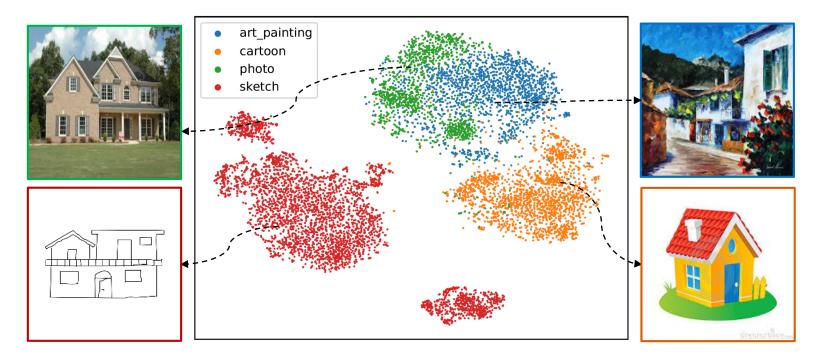
Background: Domain Generalization via Feature Augmentation

- Key observations: feature statistics of CNN layers capture domain information
 - Define x as the encoded feature of a specific sample at an early layer.



Background: Domain Generalization via Feature Augmentation

AdalN ^[ICCV'17]



 \rightarrow Based on this observation, AdaIN proposed a new style transfer method.

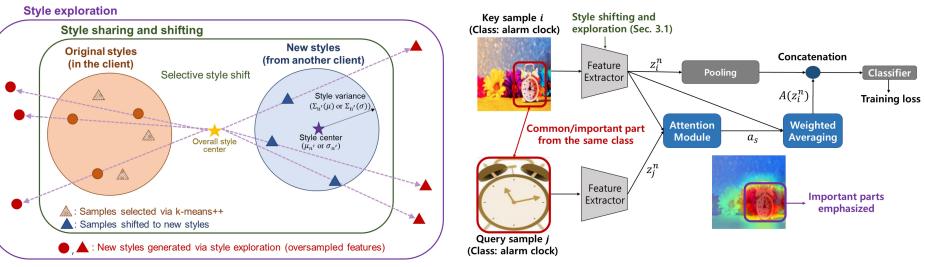
Content information of x is preserved

AdaIN(x) =
$$\sigma(y) \frac{x - \mu(x)}{\sigma(x)} + \mu(y)$$

Transfer to the style of y

Contribution: Overview of Approach

Two key components to tackle federated DG

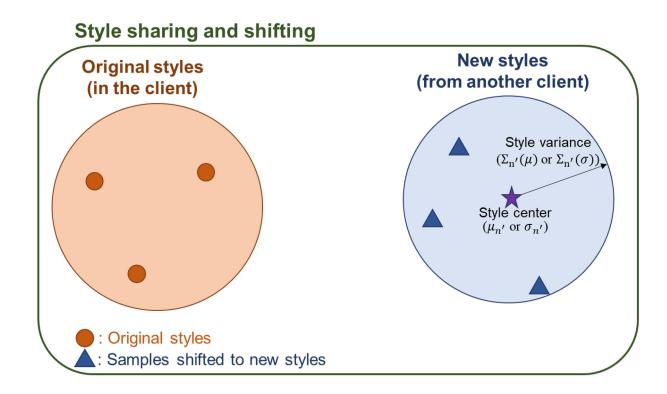


2. Attention-based learning

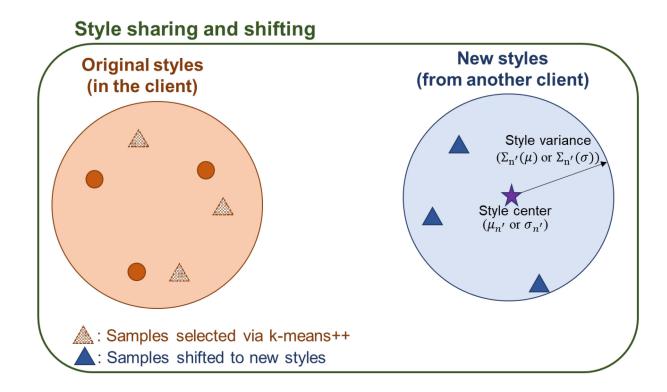
1. Style-based learning

- **Style-based learning:** Improving domain diversity (to tackle the lack of domains 1) in each client).
- 2) Attention-based learning: Extracting common/important feature information within each class and emphasize them (to tackle the lack of data in each client).

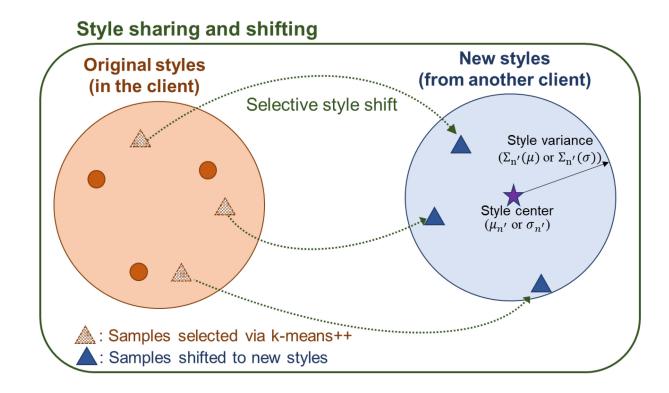
- Step 1: Style information sharing
- → Share the statistic information of each client's style



- Step 2: Selective style shifting
- → Choose B/2 cluster centers via k-means++

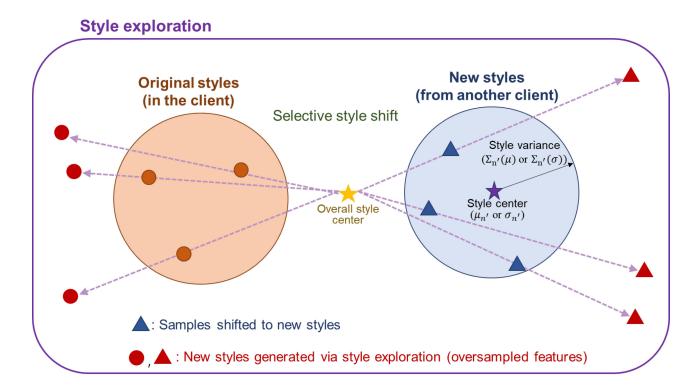


- Step 2: Selective style shifting
- → Shift the remaining B/2 samples (not cluster centers) to the new style

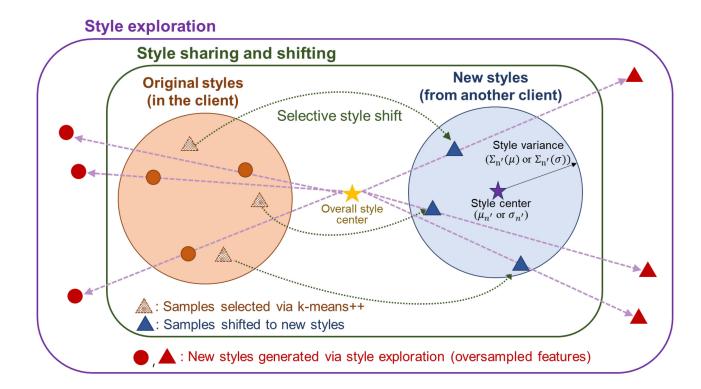


- Step 3 & 4: Feature-level oversampling & Style exploration
 - 1) Perform feature-level oversampling
 - 2) Extend the styles of oversampled features according to the below equations

$$\begin{aligned} &\mu_{new}(\tilde{s}_i^n) = \mu(\tilde{s}_i^n) + \alpha \cdot (\mu(\tilde{s}_i^n) - \mu_n(s^n)), \\ &\sigma_{new}(\tilde{s}_i^n) = \sigma(\tilde{s}_i^n) + \alpha \cdot (\sigma(\tilde{s}_i^n) - \sigma_n(s^n)), \end{aligned} \qquad \alpha: \text{exploration level}$$

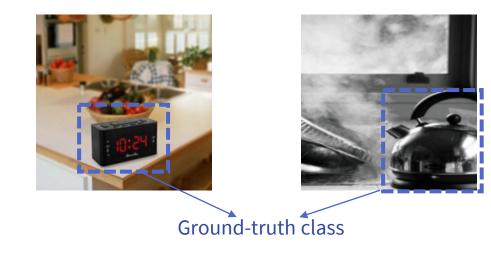


- Advantage of style-based learning
- → Each client can expose the model to diverse styles, handling the issue of the lack of styles in each FL client.



Motivation: Attention-Based Learning

- In data-poor FL, each client has a limited number of data samples.
- In practice, each real-world image usually includes background noises.
 - E.g., images in Office-Home dataset



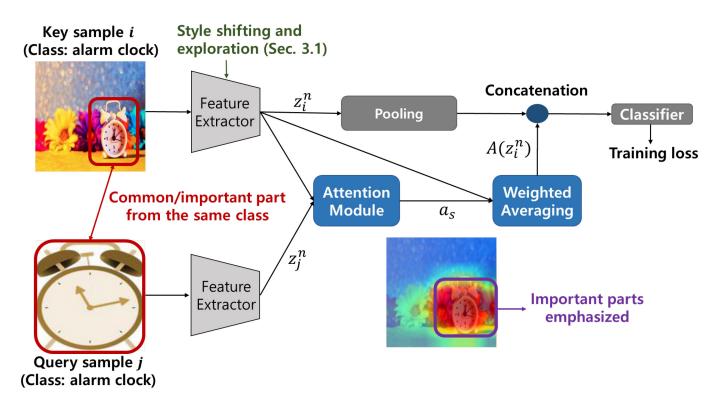
→ Leading to overfitting to small local datasets

Motivation: Attention-Based Learning

 Training: Apply both cross/self-attention to capture the common information between images from the same class.

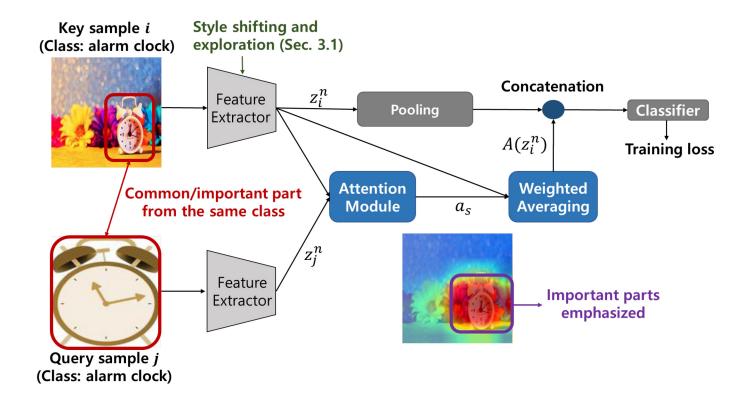
• Similarity function:
$$\operatorname{Sim}_{\operatorname{mix}}(X_i, X_j) = \left(\frac{\theta_q X_j + \theta_q X_i}{2}\right)^T (\theta_k X_i),$$

- Inference
 - Similarity function: $Sim(X_i, X_i)$



Motivation: Attention-Based Learning

- Advantage of attention-based learning
- → Focus on more important features while the effect of unimportant factors such as backgrounds is effectively reduced, improving the performance.



Experimental Results

Achievable accuracy of different schemes

	PACS					VLCS					
Methods	Art	Cartoon	Photo	Sketch	Avg.	Caltech	LabelMe	Pascal	Sun	Avg.	
FedAvg [26]	73.67	70.87	90.27	55.70	72.63	93.75	59.30	70.05	69.90	73.25	
FedBN [22]	78.42	70.9	90.96	54.07	73.59	94.81	58.59	72.06	70.36	73.96	
MixStyle [39]	79.10	76.30	90.10	60.63	76.53	95.20	60.40	72.10	69.93	74.41	
DSU [21]	80.43	75.70	92.60	69.87	79.65	96.13	58.77	71.80	71.87	74.64	
CCST [2]	71.35	72.40	88.65	64.10	74.13	92.50	61.20	68.20	66.50	72.10	
FedDG [25]	71.20	71.40	90.70	59.20	73.13	95.3	57.5	72.8	69.8	73.85	
FedSR [28]	76.40	71.25	93.25	60.55	75.36	92.10	60.50	70.75	71.65	73.75	
StableFDG (ours)	84.10	78.57	95.40	72.73	<u>82.70</u>	98.13	59.20	73.60	70.27	<u>75.30</u>	

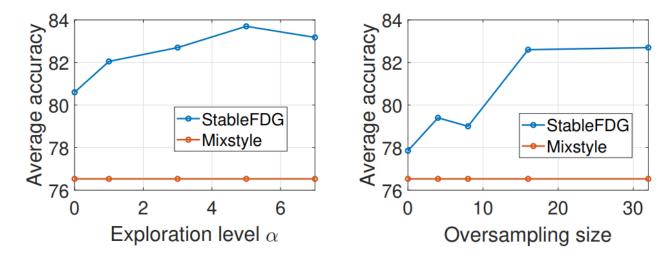
(a) PACS and VLCS datasets.

	Office-Home					Digits-DG					
Methods	Art	Clipart	Product	Real	Avg.	MNIST	MNIST-M	SVHN	SYN	Avg.	
FedAvg [26]	57.27	48.23	72.77	74.60	63.22	98.05	70.95	68.95	86.40	81.09	
FedBN [22]	57.56	48.13	72.65	74.57	63.23	97.33	72.68	71.77	85.36	81.79	
MixStyle [39]	56.05	51.55	70.95	73.25	62.95	97.75	74.25	70.85	85.50	82.09	
DSU [21]	58.55	52.60	71.60	73.15	63.98	98.10	75.60	70.47	85.80	82.49	
CCST [2]	51.3	51.75	70.2	70.3	60.89	95.10	62.80	56.60	74.90	72.35	
FedDG [25]	57.6	48.1	72.55	74.33	63.15	97.97	72.13	71.03	87.87	82.25	
FedSR [28]	57.8	48.1	72.1	74.2	63.05	98.00	73.00	68.50	86.70	81.55	
StableFDG (ours)	57.57	54.30	72.33	74.97	<u>64.79</u>	97.23	74.53	72.95	85.85	<u>82.64</u>	

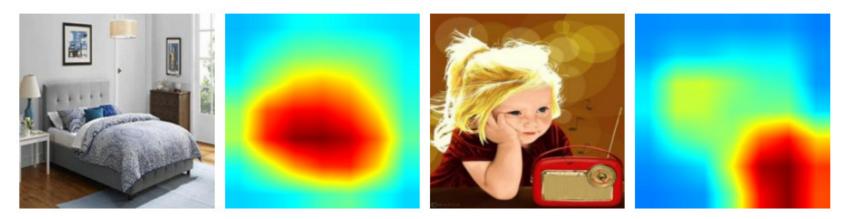
(b) Office-Home and Digits-DG datasets.

Experimental Results

Ablation studies



Visualization of attention score maps



Conclusion

- We proposed StableFDG, a new training strategy tailored to this unexplored area.
- Our style-based strategy enables the model to get exposed to various novel styles beyond each client's source domains.
- Our attention-based method captures and emphasizes the important / common characteristics of each class.
- We believe that our solution provides an interesting direction for DG and FedDG community in practice.

Reference

- [ICCV'17] Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization
- [ICLR'21] Domain Generalization with MixStyle
- [ICLR'22] Modeling Uncertain Feature Representation for Domain Generalization

Thank you

Any questions?

Contact:

Jungwuk Park

Email: savertm@kaist.ac.kr