Conditional Adapters: Parameter-efficient Transfer Learning with Fast Inference

Tao Lei Junwen Bai Siddhartha Brahma Joshua Ainslie Kenton Lee Yanqi Zhou Nan Du Vincent Y. Zhao Yuexin Wu Bo Li Yu Zhang Ming-Wei Chang

Google

Nov 13, 2023

TL;DR

- Propose a novel transfer learning method, conditional adapters (CoDA), which can achieve both parameter efficiency and computation efficiency
- Validated across Language, Vision and Speech domains
- 2x to 8x inference speed-up with moderate to no accuracy loss

Motivations

- Large Language Models (LLM)
 - Expensive to finetune
 - Slow inference speed
- Adapter Finetuning
 - Only update a small subset of parameters
 - Parameter-efficient with (slightly) slower inference speed

• Pruning

- Deterministically delete a certain portion of parameters
- Knowledge forgetting

Model design of CoDA

- Adapter Branch
 - Light-weight feed-forward parallel adapter
 - All *n* tokens are processed

• Conditional Branch

- Only k tokens are selected and processed by the frozen pretrained transformer layer, where $k \ll n$
- Generalizable to other types of adapters like LoRA

Conditional Adapters

- Left all parameters are tunable and computation is dense
- **Center** a small set of new tunable parameters while the computation is dense
- **Right** CoDA sparsely activates computation with small amount of new parameters

Conditional Adapters

Learnt Router

For each transformer layer, we learn a weight vector w to compute the dot-product with the token representation X. Then the top-k scores are selected.

Process k tokens

- These k tokens are selected and updated through the frozen transformer layer
- For the remaining n k tokens, they remain intact. The output X' only differs from X on those k tokens.

Layer Output

All n tokens have adapter updates and contributes to the final output

$$Y = X' + Z_{adapter}$$

- Three domains: NLP, Speech, Vision
- **Speed-up:** 2.2x 8x
- *New params: < 3%*

	New param	MNLI (text)		
	riew purum	Acc ↑	Speedup	
P-Adapter	0.4%	91.5	1.0x	
CoDA	0.4%	90.7	3.2 x	
	New param	OCR-VQA (vision)		
	rien purum	EM↑	Speedup	
P-Adapter	2.8%	67.5	1.0x	
CoDA	2.8%	67.6	8.0 x	
	New param	Librispeech (speech)		
	param	WER↓	Speedup	
P-Adapter	2.5%	1.4/2.7	1.0x	
CoDÂ	2.5%	1.4/2.8	2.2x	

The scaling of CoDA on the Xsum and LibriSpeech

- Same speed, better quality
- Same quality, faster speed

- Visualization of routing preferences
- Warmer colors represent higher scores
- Router prefers diverse coverage in early layers, but converges to sparse and representative patches in later layers

Model		OCRVQA		DocVQA		Screen2Words	
	r	EM	Speedup	ANLS	Speedup	CIDEr	Speedup
Parallel Adapter	-	67.5	$1 \times$	70.8	1×	110.2	$1 \times$
CoDA	4	68.2	4.6×	71.8	4.6×	111.6	4.6×
CoDA	8	67.6	8.0 imes	66.6	8.0 imes	108.1	8.0 imes
CoDA	16	66.9	$13.5 \times$	56.6	$12.1 \times$	109.0	$12.5 \times$
CoDA	32	64.4	19.4×	42.5	16.7×	104.2	$17.8 \times$

Quality-speed tradeoff on a pretrained Pix2Struct model

Thanks for listening!