

On Slicing Optimality for Mutual Information

Ammar FAYAD Majd IBRAHIM

NeurIPS 2023

Dependence Measures

• The mutual information between two random variables X and Y:

$$I(X;Y) = KL(P_{X,Y}||P_X \otimes P_Y) = \int_{X \times Y} \log\left(\frac{dP_{X,Y}}{dP_X \otimes P_Y}\right) dP_{X,Y}$$

• The sliced mutual information SI [1] is:

$$SI(X;Y) = \oint_{S^{d_{x^{-1}}} \times S^{d_{y^{-1}}}} I(\theta^T X; \phi^T Y) \, d\gamma(\theta) \otimes \gamma(\phi)$$

Where γ is the uniform distribution.

[1] Goldfeld, Z. and Greenewald, K. (2021). Sliced mutual information: A scalable measure of statistical dependence. Advances in Neural Information Processing Systems, 34.

Random slices

- How to reach an optimal slicing distribution?
- The projection directions are mainly concentrated Ι. into areas where the one-dimensional variables contain the maximum mutual information possible.
- The slicing directions are also diversified over the **II**. whole sphere, ensuring that all regions with relevant information are visited.

Definition of SI*

The optimal sliced mutual information SI^* between random variables $X \in R^{d_x}$ and $Y \in R^{d_y}$ can be expressed as:

$$SI^{*}(X;Y) = \sup_{\sigma} \oint_{S^{d_{x}-1} \times S^{d_{y}-1}} I(\theta^{T}X;\varphi^{T}Y) \, d\sigma(\theta,\varphi) \quad : \sigma_{\Theta} \in \Sigma_{d_{x},\omega_{x}}, \sigma_{\Phi} \in \Sigma_{d_{y},\omega_{y}}$$

- Where $\Sigma_{d,\omega} = \{\mu: \mu \in P(S^{d-1}), E_{x,y\sim\mu}[\arccos|x^Ty|] \ge \omega\}$
- We prove that for any $\omega_X, \omega_Y \in [0, \pi/2]$ there exists an optimal slicing policy σ^* such that the term is maximized.

Properties of SI*

- \succ SI^{*}(X; Y) is nonnegative and symmetric.
- $> SI^*(X; Y) = 0$ if and only if X and Y are independent.
- ≻ If X_n and Y_n are sequences of random variables with joint distribution $P_{X,Y}^{(n)}$ Y that converges pointwise to the joint distribution $P_{X,Y}$ then $\lim_{n\to\infty} SI^*(X_n; Y_n) = SI^*(X; Y)$.

Similar to MI, SI* has a relative entropy form, a variational representation, and a discriminator-based form.

Estimation of SI*

- { (X_n, Y_n) } are i.i.d. data points drawn from some P_{XY} .
- \hat{I}_n is a one-dimensional MI estimator over n samples.
- { $(\theta_m^*, \varphi_m^*)$ } are i.i.d slicing directions drawn from the optimal policy $\sigma_{\Theta\Phi}^*$.

$$\widehat{SI^*}_{n,m}(X;Y) = \frac{1}{m} \sum_{j=1}^m \left[\widehat{I}_n \left(\theta_j^{*T} X; \varphi_j^{*T} Y \right) \right]$$

Estimation of SI*

How to obtain $\sigma^*_{\Theta\Phi}$?

Slicing directions can be expressed as $(\theta, \phi) = (f_1(\psi, \nu), f_2(\psi, \nu))$ with $(\psi, \nu) \sim Uniform(S^{d_x-1}) \otimes Uniform(S^{d_y-1}).$ Estimate f_1, f_2 using NNs.

To train the NNs:

- Sample ψ and ν independently and uniformly on spheres S^{d_x-1} and S^{d_y-1}
- Feed the random slices to f_1 and f_2 : $\theta = f_1(\psi, \nu), \varphi = f_2(\psi, \nu)$
- Calculate average MI over output slices: $A = \frac{1}{m} \sum_{j=1}^{m} \widehat{I}_n(\theta_j^T X; \varphi_j^T Y)$

• Calculate
$$\mathcal{L} = A - \lambda_1 \left(\frac{1}{m^2} \sum_{k,j} \arccos \left| f_1^{(k)T} f_1^{(j)} \right| - \omega_X \right) - \lambda_2 \left(\frac{1}{m^2} \sum_{k,j} \arccos \left| f_2^{(k)T} f_2^{(j)} \right| - \omega_Y \right)$$

• Update f_1 and f_2 in the direction of increasing \mathcal{L} .

Convergence Rate

The uniform error bound of $\widehat{SI^*}_{n,m}(X;Y)$ is:

$$\sup_{P_{X,Y}} E\left[|SI(X;Y) - \widehat{SI^*}_{n,m}(X;Y)|\right] \le \delta(n) + \frac{U}{2\sqrt{m}}$$

• Where $\delta(n)$ is the absolute error that uniformly bounds the one-dimensional mutual information estimation, and $U \propto \left(d_x^{-1} + d_y^{-1}\right)^{1/2}$

Significantly better than MI

• Performance in varied relationships between variables and noise ratios

• Performance in very high-dimensional Representation Learning tasks

	-	-	
	conv	fc	Y
BiGAN	71.53	67.18	58.48
DIM (MI)	69.15	63.81	61.92
DIM (SI)	74.54	71.34	68.90
DIM (SI*)	76.89	71.67	70.04

STL-10 (96×96 images)

CIFAR 10

	conv	fc	Y
BiGAN	62.57	62.74	52.54
DIM (MI)	72.66	70.66	64.71
DIM (SI)	74.37	70.23	65.99
DIM (SI*)	77.01	70.39	69.04

 We compare SI* against SI and MI using the algorithm Deep InfoMax (DIM) [2] on two baseline datasets, along with the results of BiGAN method [3].

[2] Hjelm, R. D., Fedorov, A., Lavoie-Marchildon, S., Grewal, K., Bachman, P., Trischler, A., and Bengio, Y. (2019). Learning deep representations by mutual information estimation and maximization. In International Conference on Learning Representations.
[3] Donahue, J., Krähenbühl, P., and Darrell, T. (2016). Adversarial feature learning. arXiv preprint arXiv:1605.09782.

• Performance in very high-dimensional Representation Learning tasks

		-	
	conv	fc	Y
BiGAN	71.53	67.18	58.48
DIM (MI)	69.15	63.81	61.92
DIM (SI)	74.54	71.34	68.90
DIM (SI*)	76.89	71.67	70.04

STL-10 (96×96 images)

CIFAR 10

	conv	fc	Y
BiGAN	62.57	62.74	52.54
DIM (MI)	72.66	70.66	64.71
DIM (SI)	74.37	70.23	65.99
DIM (SI*)	77.01	70.39	69.04

We compare SI* against SI and MI using the algorithm Deep InfoMax (DIM) [2] on two baseline datasets, along with the results of BiGAN method [3].

Thank you! Come visit us at the poster!

[2] Hjelm, R. D., Fedorov, A., Lavoie-Marchildon, S., Grewal, K., Bachman, P., Trischler, A., and Bengio, Y. (2019). Learning deep representations by mutual information estimation and maximization. In International Conference on Learning Representations.
 [3] Donahue, J., Krähenbühl, P., and Darrell, T. (2016). Adversarial feature learning. arXiv preprint arXiv:1605.09782.