

ImageReward: Learning and Evaluating Human Preference for Text-to-Image Generation

Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, Yuxiao Dong

Tsinghua University and Zhipu AI

Outline		
1	Overview	
2	ImageRewardDB: Preference Annotation	
3	ImageReward: Reward Model	
4	ReFL: Reward Feedback Learning	

Issues in Generated Images

(a) A painting of a girl walking in a hallway and suddenly finds a giant sunflower on the floor blocking her way.

(b) Coronation of the sun emperor.

(c) **Sculpture made of** flame, portrait, female.

Images are generated by Stable Diffusion.

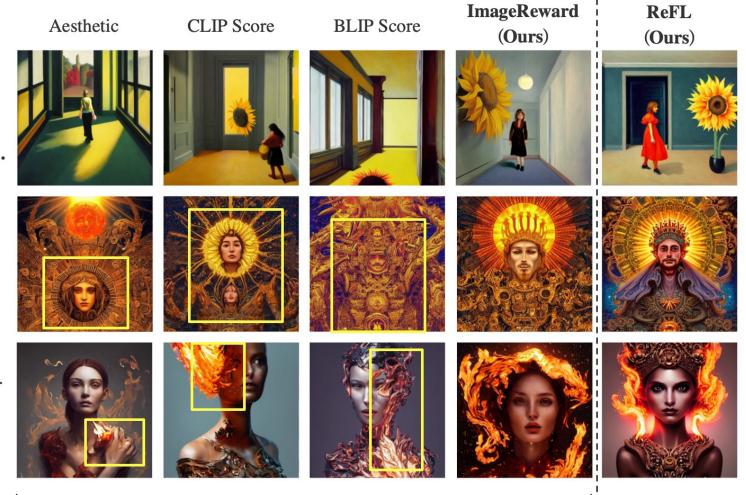
- Text-image Alignment
- Body Problem
- Human Aesthetic
- Toxicity and Biases

Align with Human Preference

(a) A painting of a girl walking in a hallway and suddenly finds a giant sunflower on the floor blocking her way.

(b) **Coronation of the sun emperor**.

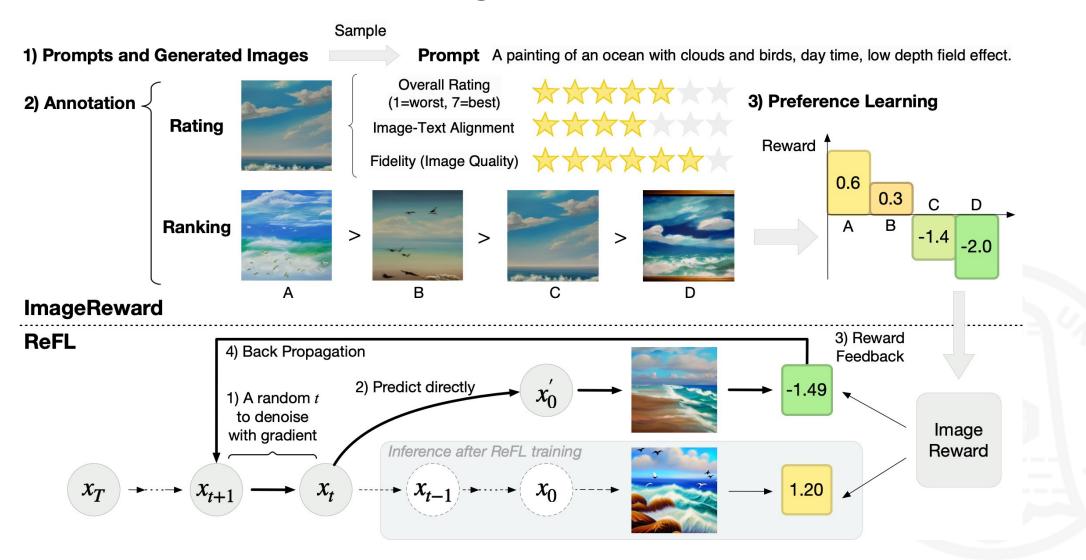
(c) Sculpture made of flame, portrait, female.



Top-1 images out of 64 generations selected by different text-image scorers.

1-shot generation after ReFL training.

Overview of ImageReward and ReFL



Outline		
1	Overview	
2 Ima	ageRewardDB: Preference Annotation	
3	ImageReward: Reward Model	
4	ReFL: Reward Feedback Learning	

ImageRewardDB: Sample Collection

Source:

DiffusionDB (1.8M prompts, 14M images generated by Stable Diffusion).

Prompt Selection Method:

Graph-based algorithm with language model-based prompt similarity.

Prompt Selection Result:

10,000 candidate prompts, each accompanied by **4 to 9** sampled images, resulting in **177,304** candidate pairs for labeling.

ImageRewardDB: Annotation Pipeline

Prompt

a painting of an ocean with clouds and birds, day time, low depth field effect

Please enter phrases from the text that you think are important but not reflected in the generated image (separated by commas)

Overall Rating (1=worst, 7=best) ①

Image-Text Alignment 🛈

Fidelity (Image quality) 🛈

Does the image have any of the following issues?

Obvious 'repeated generation' resulting in unreality

Existence of body problem

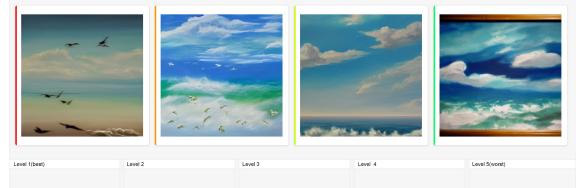
- Too blurry to see objects
- Causes psychological discomfort
- Output contains sexual content
- Output contains violent content
- Output contains content that defames certain groups

Prompt

a painting of an ocean with clouds and birds, day time, low depth field effect

Ranking outputs (1=best, 5=worst)

To be sorted



- **Prompt Annotation**: Categorizing prompts and identifying problematic ones.
- **Text-Image Rating**: Images are rated based on alignment, fidelity, and harmlessness.
- Image Ranking: Rank the images in order of preference.

ImageRewardDB: Annotation Management

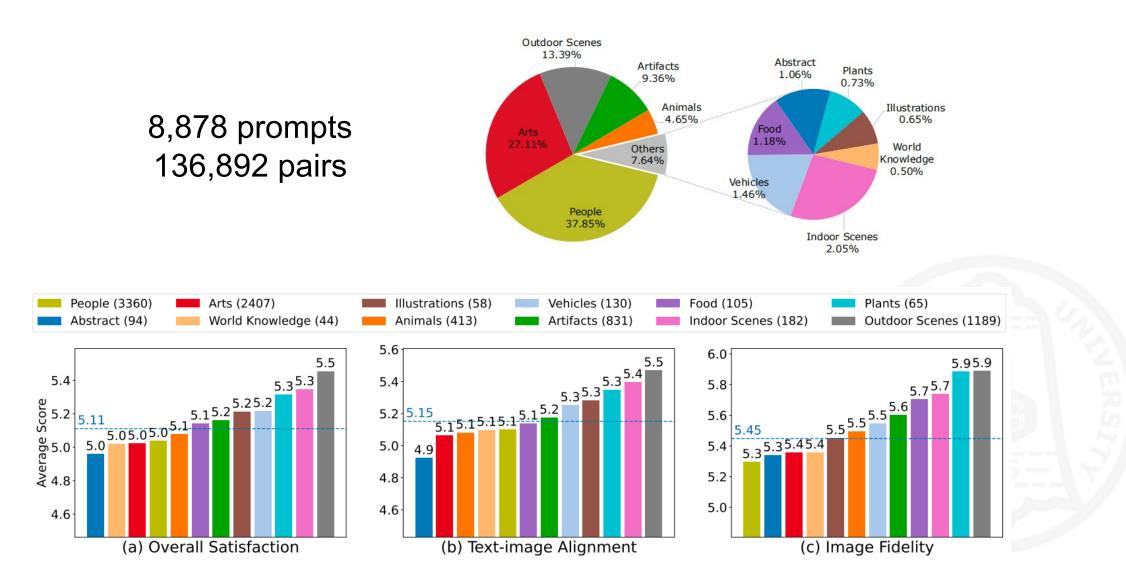
Annotation document:

- Criteria for rating/ranking.
- Explanation for alignment/fidelity/harmlessness.
- Trade-offs for potential contradictions in the ranking.

Annotators:

- Collaboration with a professional data annotation company.
- Trained using annotation documents.
- Quality inspectors: Double-check each annotation.

ImageRewardDB: Dataset Analysis

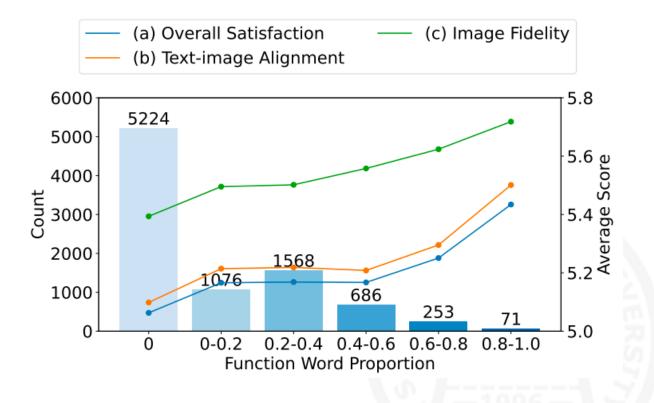


(金) 前身大学 计导机科学与技术系。 Frank and a final a state of the sta

ImageRewardDB: Dataset Analysis

Function word

Many prompts not only describe the **content and style** but also contain some "function" words, like **"8k" and "highly detailed"**, trying to **improve the quality** of generated images.



Outline		
1	Overview	
2	ImageRewardDB: Preference Annotation	
3	ImageReward: Reward Model	
4	ReFL: Reward Feedback Learning	

ImageReward: Model and Data Settings

- Model Architecture:
 - **BLIP** backbone + **MLP** head
 - ViT-L for image encoder, 12-layers Transformer for text encoder
- Dataset Settings:
 - Training set: **8k** prompts of annotation.
 - Test set: **466** prompts from annotators who have a higher agreement with researchers to consist for the model test.

ImageReward: RM Training

- 1. We have $k \in [4, 9]$ images ranked for the same prompt **T** (the best to the worst are denoted as $x_1, x_2, ..., x_k$) and get at most C_k^2 comparison pairs if no ties between two images.
- 2. For each comparison, if x_i is better and x_j is worse, the loss function can be formulated as:

$$loss(\theta) = -\mathbb{E}_{(T,x_i,x_j)\sim\mathcal{D}}[log(\sigma(f_{\theta}(T,x_i) - f_{\theta}(T,x_j)))]$$

where $f_{\theta}(T, x)$ is a scalar value of preference model for prompt T and generated image x.

ImageReward: Training Settings

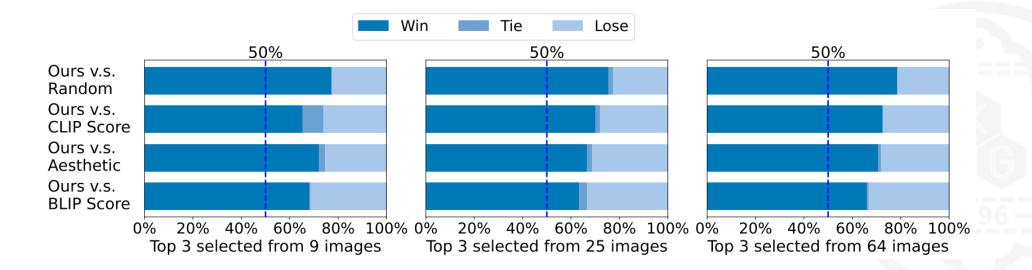
- 1. Initialize:
 - Load the pre-trained checkpoint of BLIP
 - Initialize MLP head according to N(0, $1/(d_{model} + 1))$
- 2. Hyperparameter:
 - Learning rate: initialize **1e-5**, decay with a **cosine** schedule
 - Fix rate: fixing **70%** of transformer layers
 - Batch size: 64

ImageReward: Agreement Analysis

	researcher	annotator	annotator ensemble	CLIP Score	Aesthetic	BLIP Score	Ours
researcher	71.2% ± 11.1%	65.3% ± 8.5%		57.8% ± 3.6%	55.6% ± 3.1%	57.0% ± 3.0%	64.5% ± 2.5%
annotator	$65.3\% \pm 8.5\%$	65.3% ± 5.6%	53.9% ± 5.8%	54.3% ± 3.2%	55.9% ± 3.1%		65.3% ± 3.7%
annotator ensemble	73.4% ± 6.2%	53.9% ± 5.8%	-	54.4% ± 21.1%	57.5% ± 15.9%		70.5% ± 18.6%

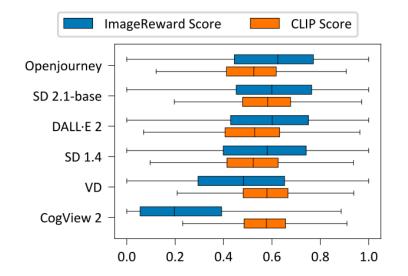
ImageReward: Preference Accuracy

Model	Preference Acc.	@1	Recall @2	@4	@1	Filter @2	@4
CLIP Score Aesthetic Score BLIP Score	54.82 57.35 57.76	27.22 30.73 30.73	48.52 53.91 50.67	78.17 75.74 77.63	29.65 32.08 33.42	51.75 54.45 56.33	76.82 76.55 80.59
ImageReward (Ours)	65.14	39.62	63.07	90.84	49.06	70.89	88.95



ImageReward: As Metric

	Real User Prompts							MS-COCO 2014				
Dataset & Model	Human Eval.		ImageReward		CLIP		ImageReward		Zero-shot FID*			
	Rank	#Win	Rank	Score	Rank	Score	Rank	Score	Rank	Score		
Openjourney	1	507	1	0.2614	2	0.2726	3	-0.0455	5	20.7		
Stable Diffusion 2.1-base	2	463	2	0.2458	4	0.2683	2	0.1553	4	18.8		
DALL-E 2	3	390	3	0.2114	3	0.2684	1	0.5387	1	10.9*		
Stable Diffusion 1.4	4	362	4	0.1344	1	0.2763	4	-0.0857	2	17.9		
Versatile Diffusion	5	340	5	-0.2470	5	0.2606	5	-0.5485	3	18.4		
CogView 2	6	74	6	-1.2376	6	0.2044	6	-0.8510	6	26.2		
Spearman ρ to Human Eval.	al		1.00		0.60		0.77		0.09			

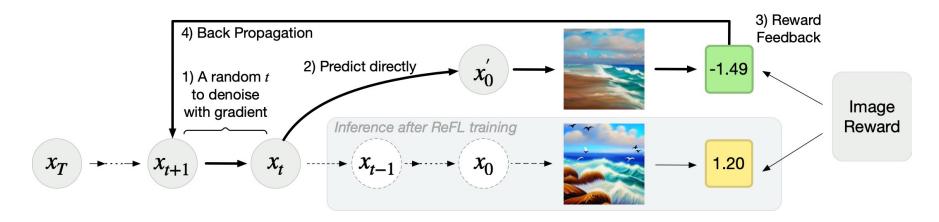


- 1. Better Human Alignment Across Models.
- 2. Better Distinguishability

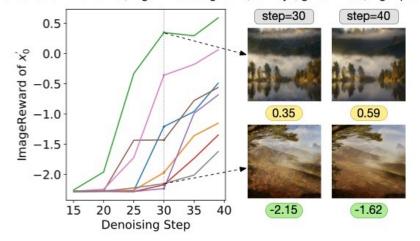
Across Models and Samples.

Outline		
1	Overview	
2	ImageRewardDB: Preference Annotation	
3	ImageReward: Reward Model	
4	ReFL: Reward Feedback Learning	

ReFL: Algorithm Design



Prompt: Landscape photography by marc adamus, mountains with some forests, small lake in the center, fog in the background, sunrays, golden hour, high quality.



 $\mathcal{L}_{reward} = \lambda \mathbb{E}_{y_i \sim \mathcal{Y}}(\phi(r(y_i, g_{\theta}(y_i))))$

- θ : parameters of the LDM
- y_i : prompt, \mathcal{Y} : prompt set
- $g_{\theta}(y_i)$: generated image of LDM
- *r*: reward model
- ϕ : reward-to-loss map function
- λ : reward re-weight scale

ReFL: Algorithm Design

Algorithm 1 Reward Feedback Learning (ReFL) for LDMs

- 1: **Dataset:** Prompt set $\mathcal{Y} = \{y_1, y_2, ..., y_n\}$
- 2: **Pre-training Dataset:** Text-image pairs dataset $\mathcal{D} = \{(\operatorname{txt}_1, \operatorname{img}_1), \dots (\operatorname{txt}_n, \operatorname{img}_n)\}$
- 3: **Input:** LDM with pre-trained parameters w_0 , reward model r, reward-to-loss map function ϕ , LDM pre-training loss function ψ , reward re-weight scale λ
- 4: Initialization: The number of noise scheduler time steps T, and time step range for fine-tuning $[T_1, T_2]$
- 5: for $y_i \in \mathcal{Y}$ and $(\operatorname{txt}_i, \operatorname{img}_i) \in \mathcal{D}$ do
- 6: $\mathcal{L}_{pre} \leftarrow \psi_{w_i}(\mathsf{txt}_i, \mathsf{img}_i)$
- 7: $w_i \leftarrow w_i // \text{Update LDM}_{w_i}$ using Pre-training Loss
- 8: $t \leftarrow rand(T_1, T_2)$ // Pick a random time step $t \in [T_1, T_2]$
- 9: $x_T \sim \mathcal{N}(0, I)$ // Sample noise as latent
- 10: **for** j = T, ..., t + 1 **do**
- 11: **no grad:** $x_{j-1} \leftarrow \text{LDM}_{w_i}\{x_j\}$
- 12: **end for**
- 13: with grad: $x_{t-1} \leftarrow \text{LDM}_{w_i}\{x_t\}$
- 14: $x_0 \leftarrow x_{t-1}$ // Predict the original latent by noise scheduler
- 15: $z_i \leftarrow x_0 //$ From latent to image
- 16: $\mathcal{L}_{reward} \leftarrow \lambda \phi(r(y_i, z_i)) // \text{ReFL loss}$
- 17: $w_{i+1} \leftarrow w_i // \text{Update LDM}_{w_i} \text{ using ReFL loss}$

18: end for

ReFL: Human Evaluation

- Fine-tuning Settings:
 - **20,000** samples from DiffusionDB
 - the same training settings (the same learning rate and batch size)
- Evaluation Dataset:
 - **466** real user prompts from DiffusionDB
 - 90 designed challenging prompts from multi-task benchmark
- Human evaluation:
 - **sorting** multiple images under a prompt
 - Stable Diffusion v1.4, PNDM noise scheduler and default classifier free guidance scale of 7.5 for inference.

ReFL: Human Evaluation

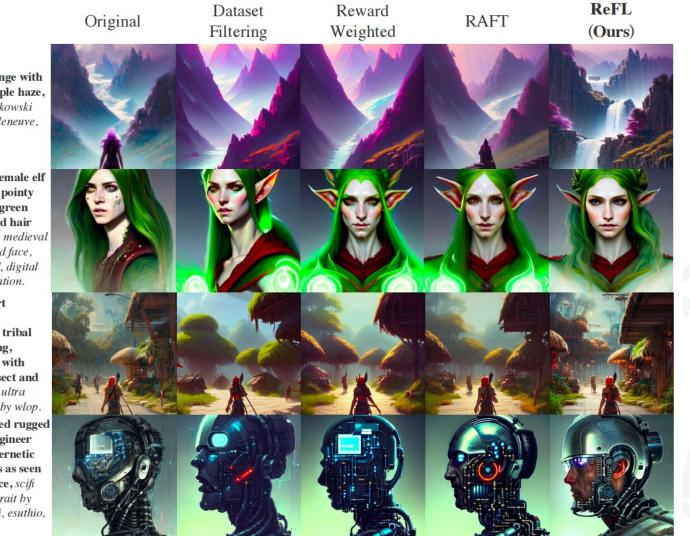
Methods	Real U	ser Prompt	s MT B	MT Bench [40]			
1,1001000	#Win WinRate		#Win	WinRate			
SD v1.4 (baseline) 45	1315	-	718	-			
Dataset Filtering [61]	1394	55.17	735	51.72			
Reward Weighted [23]	1075	39.52	585	43.33			
RAFT [13] (iter=1)	1341	49.86	578	42.31			
RAFT (iter=2)	753	30.85	452	33.02			
RAFT (iter=3)	398	20.97	355	26.19			
ReFL (Ours)	1508	58.79	808	58.49			

Table 4: Human evaluation on different LDM optimization methods. ReFL performs the best with regard to total win count and WinRate against SD v1.4 baseline.

SD v1.4	0.5	0.45	0.6	0.5	0.69	0.79	0.41		-0.8
Dataset Filtering	0.55	0.5	0.65	0.54	0.72	0.83	0.48		-0.7
Reward Weighted	0.4	0.35	0.5	0.32	0.71	0.84	0.33		-0.6
RAFT-1	0.5	0.46	0.68	0.5	0.78	0.87	0.4		0.5
RAFT-2	0.31	0.28	0.29	0.22	0.5	0.83	0.24		0.4
RAFT-3	0.21	0.17	0.16	0.13	0.17	0.5	0.15		-0.3
ReFL	0.59	0.52	0.67	0.6	0.76	0.85	0.5		0.2
	SD v1.4	Dataset Filtering	Reward Weighted	RAFT-1	RAFT-2	RAFT-3	ReFL		

Figure 6: Win rates between all methods.

ReFL: Qualitative Comparison



Mountains range with waterfall, purple haze, art by greg rutkowski and magali villeneuve, artstation.

Portrait of a female elf warlock, long pointy ears, glowing green eyes, bushy red hair and freckles + medieval setting, detailed face, highly detailed, digital painting, artstation.

An concept art illustration, photorealistic tribal people working, fantasy street with huts, large insect and plant biomes, *ultra realistic, style by wlop.* A half - masked rugged laboratory engineer man with cybernetic enhancements as seen

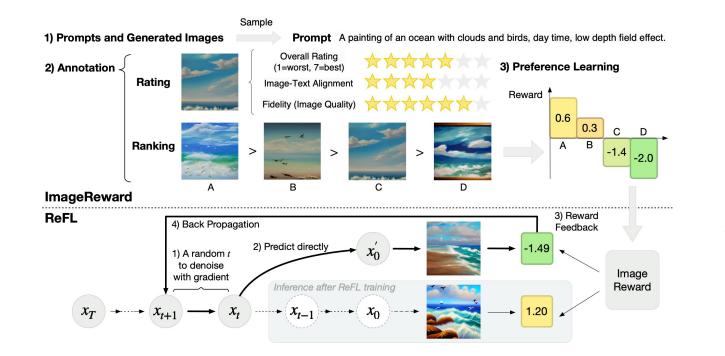
from a distance, scifi character portrait by greg rutkowski, esuthio, craig mullins.

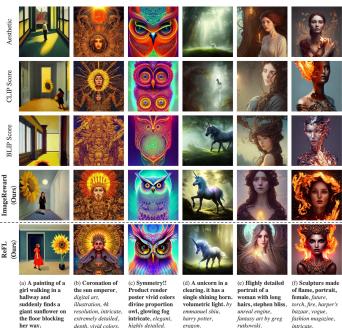
ImageReward: Summary

ImageReward Page: https://github.com/THUDM/ImageReward

Python Package: https://pypi.org/project/image-reward/

ImageRewardDB: https://huggingface.co/datasets/THUDM/ImageRewardDB





(S)用考えぞ计算机科学与技术系 Souther and the second characterized in the second second characterized in the second s