Regularization properties of adversarially-trained linear regression

Antônio H. Ribeiro^{1,*}, Dave Zachariah¹, Francis Bach², Thomas B. Schon¹

> ¹Uppsala University, Sweden ²INRIA / PSL research university, France

> > *Presenting

NeurIPS 2023

Explaining and Harnessing Adversarial Examples

Explaining and Harnessing Adversarial Examples

Explaining and Harnessing Adversarial Examples

Explaining and Harnessing Adversarial Examples

Adversarial training: Each training sample is modified by an adversary.

Linear regression:

$$\min_{\beta} \sum_{i=1}^{\# train} (\mathbf{y}_i - \beta^\top \mathbf{x}_i)^2$$

Linear regression:

Linear regression:

$$\min_{\beta} \sum_{i=1}^{\# train} (\mathbf{y}_i - \beta^{\top} \mathbf{x}_i)^2$$

• Adversarial training in linear regression:

$$(\mathbf{y}_i - \boldsymbol{\beta}^\top (\mathbf{x}_i + \Delta x_i))^2$$

Linear regression:

$$\min_{\beta} \sum_{i=1}^{\#train} (y_i - \beta^\top x_i)^2$$

Adversarial training in linear regression:

$$\max_{\|\Delta x_i\| \le \delta} (y_i - \beta^\top (\mathbf{x}_i + \Delta x_i))^2$$

Linear regression:

$$\min_{\beta} \sum_{i=1}^{\#train} (y_i - \beta^\top \mathbf{x}_i)^2$$

Adversarial training in linear regression:

$$\min_{\beta} \sum_{i=1}^{\#train} \max_{\|\Delta x_i\| \leq \delta} (y_i - \beta^\top (\mathbf{x}_i + \Delta x_i))^2$$

$$\sum_{i=1}^{\#train} \max_{\|\Delta x_i\| \leq \delta} (\mathbf{y}_i - (\mathbf{x}_i + \Delta x_i)^{\mathsf{T}} \beta)^2$$

$$\sum_{i=1}^{\# train} \max_{\|\Delta x_i\| \le \delta} (\mathbf{y}_i - (\mathbf{x}_i + \Delta x_i)^\mathsf{T} \beta)^2$$

It can be rewritten as:

$$\sum_{i=1}^{\#train} \left(|\mathbf{y}_i - \mathbf{x}_i^{\mathsf{T}} \beta| + \delta \|\beta\|_* \right)^2$$

where $\|\cdot\|_*$ is the dual norm.

$$\sum_{i=1}^{\#train} \max_{\|\Delta x_i\|_{\infty} \le \delta} (y_i - (x_i + \Delta x_i)^{\mathsf{T}} \beta)^2$$

It can be rewritten as:

$$\sum_{i=1}^{\#train} \left(|\boldsymbol{y}_i - \boldsymbol{x}_i^{\mathsf{T}}\boldsymbol{\beta}| + \delta \|\boldsymbol{\beta}\|_1 \right)^2$$

where $\|\cdot\|_1$ is the dual norm.

• ℓ_{∞} -adversarial attacks:

$$\sum_{i=1}^{\# train} \left(|\mathbf{y}_i - \mathbf{x}_i^{\mathsf{T}} \beta| + \delta \|\beta\|_1 \right)^2$$

► Lasso:

$$\sum_{i=1}^{\#train} \left(|\mathbf{y}_i - \mathbf{x}_i^{\mathsf{T}} \boldsymbol{\beta}| \right)^2 + \lambda \|\boldsymbol{\beta}\|_1.$$

• ℓ_{∞} -adversarial attacks:

$$\sum_{i=1}^{\#train} \left(|\mathbf{y}_i - \mathbf{x}_i^{\mathsf{T}}\beta| + \delta \|\beta\|_1 \right)^2$$

► Lasso:

$$\sum_{i=1}^{\# train} \left(|\mathbf{y}_i - \mathbf{x}_i^{\mathsf{T}} \boldsymbol{\beta}| \right)^2 + \lambda \|\boldsymbol{\beta}\|_1.$$

 \blacktriangleright ℓ_{∞} -adversarial attacks:

$$\sum_{i=1}^{\#train} \left(|\mathbf{y}_i - \mathbf{x}_i^{\mathsf{T}} \boldsymbol{\beta}| + \delta \|\boldsymbol{\beta}\|_1 \right)^2$$

► Lasso:

$$\sum_{i=1}^{\#\text{train}} \left(|\mathbf{y}_i - \mathbf{x}_i^{\mathsf{T}} \boldsymbol{\beta}| \right)^2 + \frac{\lambda \|\boldsymbol{\beta}\|_1}{1}.$$

Main results:

#1. Map $\lambda \leftrightarrow \delta$ for which they yield the same result.

• ℓ_{∞} -adversarial attacks:

$$\sum_{i=1}^{\#train} \left(|\mathbf{y}_i - \mathbf{x}_i^{\mathsf{T}} \boldsymbol{\beta}| + \delta \|\boldsymbol{\beta}\|_1 \right)^2$$

Lasso:

$$\sum_{i=1}^{\#\text{train}} \left(|\mathbf{y}_i - \mathbf{x}_i^{\mathsf{T}} \boldsymbol{\beta}| \right)^2 + \lambda \|\boldsymbol{\beta}\|_1.$$

Main results:

- #1. Map $\lambda \leftrightarrow \delta$ for which they yield the same result.
- #2. More parameters than data: abrupt transition into interpolation.

• ℓ_{∞} -adversarial attacks:

$$\sum_{i=1}^{\#train} \left(|\mathbf{y}_i - \mathbf{x}_i^{\mathsf{T}} \boldsymbol{\beta}| + \delta \|\boldsymbol{\beta}\|_1 \right)^2$$

► Lasso:

$$\sum_{i=1}^{\#\text{train}} \left(|\mathbf{y}_i - \mathbf{x}_i^{\mathsf{T}} \boldsymbol{\beta}| \right)^2 + \lambda \|\boldsymbol{\beta}\|_1.$$

Main results:

- #1. Map $\lambda \leftrightarrow \delta$ for which they yield the same result.
- #2. More parameters than data: abrupt transition into interpolation.
- #3. **Optimal choice** of δ independent on noise level.

1. Equivalence with Lasso

Map $\lambda \leftrightarrow \delta$ for which they yield the **same result**.

1. Equivalence with Lasso

Map $\lambda \leftrightarrow \delta$ for which they yield the **same result**.

The that yield the same result are not necessarily the same, i.e.: $\delta \neq \lambda$

Lasso: transition only in the limit

 $\lambda \to 0^+ \Rightarrow \text{Mean square error} \to 0$

Lasso: transition only in the limit

 $\lambda \to 0^+ \Rightarrow \text{Mean square error} \to 0$

Adversarial training:

Lasso: transition only in the limit

 $\lambda \to 0^+ \Rightarrow \text{Mean square error} \to 0$

Adversarial training:

Lasso: transition only in the limit

 $\lambda \to 0^+ \Rightarrow \text{Mean square error} \to 0$

Adversarial training:

Lasso: transition only in the limit

 $\lambda \to 0^+ \Rightarrow \text{Mean square error} \to 0$

Adversarial training:

2. Equivalence with minimum norm interpolator

For $\delta \in (0, \text{threshold}]$, the minimum-norm interpolator is the solution to adversarial training.

2. Equivalence with minimum norm interpolator

For $\delta \in (0, \text{threshold}]$, the minimum-norm interpolator is the solution to adversarial training.

Relevance

Connect adversarial training with double descent and benign overfitting

3. Invariance to noise levels

To obtain near-oracle performance.

Lasso:

$$\lambda \propto \sigma \sqrt{\log(\# {\it params})/\# train}$$

 \blacktriangleright ℓ_{∞} -adversarial attack:

$$\delta \propto \sqrt{\log(\# \textit{params})/\#\textit{train}}$$

3. Invariance to noise levels

To obtain near-oracle performance.

Lasso:

 \blacktriangleright ℓ_{∞} -adversarial attack:

$$\delta \propto \sqrt{\log(\# \textit{params})/\#\textit{train}}$$

Data model

arXiv:2310.10807

 \triangleright ℓ_2 -adv. attacks and ridge regression.

arXiv:2310.10807

- ℓ_2 -adv. attacks and ridge regression.
- Generalization to other loss functions

arXiv:2310.10807

- ℓ_2 -adv. attacks and ridge regression.
- Generalization to other loss functions
- Connection to robust regression and \sqrt{Lasso} .