# Regularization properties of adversarially-trained linear regression

**Antônio H. Ribeiro**<sup>1,\*</sup>, Dave Zachariah<sup>1</sup>, Francis Bach<sup>2</sup>, Thomas B. Schon<sup>1</sup>

> <sup>1</sup>Uppsala University, Sweden <sup>2</sup>INRIA / PSL research university, France

> > \*Presenting

NeurIPS 2023



#### Explaining and Harnessing Adversarial Examples

Adversarial training: Each training sample is modified by an adversary.

**Linear regression:** 

$$\min_{\beta} \sum_{i=1}^{\# train} (\mathbf{y}_i - \beta^\top \mathbf{x}_i)^2$$

**Linear regression:** 



**Linear regression:** 

$$\min_{\beta} \sum_{i=1}^{\# train} (\mathbf{y}_i - \beta^{\top} \mathbf{x}_i)^2$$

• Adversarial training in linear regression:

$$(\mathbf{y}_i - \boldsymbol{\beta}^\top (\mathbf{x}_i + \Delta x_i))^2$$

### **Linear regression:**

$$\min_{\beta} \sum_{i=1}^{\#train} (y_i - \beta^\top x_i)^2$$

Adversarial training in linear regression:

$$\max_{\|\Delta x_i\| \le \delta} (y_i - \beta^\top (\mathbf{x}_i + \Delta x_i))^2$$

**Linear regression:** 

$$\min_{\beta} \sum_{i=1}^{\#train} (y_i - \beta^\top \mathbf{x}_i)^2$$

Adversarial training in linear regression:

$$\min_{\beta} \sum_{i=1}^{\#train} \max_{\|\Delta x_i\| \leq \delta} (y_i - \beta^\top (\mathbf{x}_i + \Delta x_i))^2$$

$$\sum_{i=1}^{\#train} \max_{\|\Delta x_i\| \leq \delta} (\mathbf{y}_i - (\mathbf{x}_i + \Delta x_i)^{\mathsf{T}} \beta)^2$$

$$\sum_{i=1}^{\# train} \max_{\|\Delta x_i\| \le \delta} (\mathbf{y}_i - (\mathbf{x}_i + \Delta x_i)^\mathsf{T} \beta)^2$$

It can be rewritten as:

$$\sum_{i=1}^{\#train} \left( |\mathbf{y}_i - \mathbf{x}_i^{\mathsf{T}} \beta| + \delta \|\beta\|_* \right)^2$$

where  $\|\cdot\|_*$  is the dual norm.

$$\sum_{i=1}^{\#train} \max_{\|\Delta x_i\|_{\infty} \le \delta} (y_i - (x_i + \Delta x_i)^{\mathsf{T}} \beta)^2$$

It can be rewritten as:

$$\sum_{i=1}^{\#train} \left( |\boldsymbol{y}_i - \boldsymbol{x}_i^{\mathsf{T}}\boldsymbol{\beta}| + \delta \|\boldsymbol{\beta}\|_1 \right)^2$$

where  $\|\cdot\|_1$  is the dual norm.

•  $\ell_{\infty}$ -adversarial attacks:

$$\sum_{i=1}^{\# train} \left( |\mathbf{y}_i - \mathbf{x}_i^{\mathsf{T}} \beta| + \delta \|\beta\|_1 \right)^2$$

► Lasso:

$$\sum_{i=1}^{\#train} \left( |\mathbf{y}_i - \mathbf{x}_i^{\mathsf{T}} \boldsymbol{\beta}| \right)^2 + \lambda \|\boldsymbol{\beta}\|_1.$$

•  $\ell_{\infty}$ -adversarial attacks:

$$\sum_{i=1}^{\#train} \left( |\mathbf{y}_i - \mathbf{x}_i^{\mathsf{T}}\beta| + \delta \|\beta\|_1 \right)^2$$

► Lasso:

$$\sum_{i=1}^{\# train} \left( |\mathbf{y}_i - \mathbf{x}_i^{\mathsf{T}} \boldsymbol{\beta}| \right)^2 + \lambda \|\boldsymbol{\beta}\|_1.$$

 $\blacktriangleright$   $\ell_{\infty}$ -adversarial attacks:

$$\sum_{i=1}^{\#train} \left( |\mathbf{y}_i - \mathbf{x}_i^{\mathsf{T}} \boldsymbol{\beta}| + \delta \|\boldsymbol{\beta}\|_1 \right)^2$$

► Lasso:

$$\sum_{i=1}^{\#\text{train}} \left( |\mathbf{y}_i - \mathbf{x}_i^{\mathsf{T}} \boldsymbol{\beta}| \right)^2 + \frac{\lambda \|\boldsymbol{\beta}\|_1}{1}.$$

## Main results:

#1. Map  $\lambda \leftrightarrow \delta$  for which they yield the same result.

•  $\ell_{\infty}$ -adversarial attacks:

$$\sum_{i=1}^{\#train} \left( |\mathbf{y}_i - \mathbf{x}_i^{\mathsf{T}} \boldsymbol{\beta}| + \delta \|\boldsymbol{\beta}\|_1 \right)^2$$

**Lasso:** 

$$\sum_{i=1}^{\#\text{train}} \left( |\mathbf{y}_i - \mathbf{x}_i^{\mathsf{T}} \boldsymbol{\beta}| \right)^2 + \lambda \|\boldsymbol{\beta}\|_1.$$

## Main results:

- #1. Map  $\lambda \leftrightarrow \delta$  for which they yield the same result.
- #2. More parameters than data: abrupt transition into interpolation.

•  $\ell_{\infty}$ -adversarial attacks:

$$\sum_{i=1}^{\#train} \left( |\mathbf{y}_i - \mathbf{x}_i^{\mathsf{T}} \boldsymbol{\beta}| + \delta \|\boldsymbol{\beta}\|_1 \right)^2$$

► Lasso:

$$\sum_{i=1}^{\#\text{train}} \left( |\mathbf{y}_i - \mathbf{x}_i^{\mathsf{T}} \boldsymbol{\beta}| \right)^2 + \lambda \|\boldsymbol{\beta}\|_1.$$

### Main results:

- #1. Map  $\lambda \leftrightarrow \delta$  for which they yield the same result.
- #2. More parameters than data: abrupt transition into interpolation.
- #3. **Optimal choice** of  $\delta$  independent on noise level.

# # 1. Equivalence with Lasso

**Map**  $\lambda \leftrightarrow \delta$  for which they yield the **same result**.



# # 1. Equivalence with Lasso

**Map**  $\lambda \leftrightarrow \delta$  for which they yield the **same result**.



The that yield the same result are not necessarily the same, i.e.:  $\delta \neq \lambda$ 

Lasso: transition only in the limit

 $\lambda \to 0^+ \Rightarrow \text{Mean square error} \to 0$ 

Lasso: transition only in the limit

 $\lambda \to 0^+ \Rightarrow \text{Mean square error} \to 0$ 

Adversarial training:

Lasso: transition only in the limit

 $\lambda \to 0^+ \Rightarrow \text{Mean square error} \to 0$ 

Adversarial training:



Lasso: transition only in the limit

 $\lambda \to 0^+ \Rightarrow \text{Mean square error} \to 0$ 

Adversarial training:



Lasso: transition only in the limit

 $\lambda \to 0^+ \Rightarrow \text{Mean square error} \to 0$ 

Adversarial training:



# # 2. Equivalence with minimum norm interpolator

For  $\delta \in (0, \text{threshold}]$ , the minimum-norm interpolator is the solution to adversarial training.

# 2. Equivalence with minimum norm interpolator

For  $\delta \in (0, \text{threshold}]$ , the minimum-norm interpolator is the solution to adversarial training.

Relevance

Connect adversarial training with double descent and benign overfitting

# # 3. Invariance to noise levels

To obtain near-oracle performance.

Lasso:

$$\lambda \propto \sigma \sqrt{\log(\# {\it params})/\# train}$$

 $\blacktriangleright$   $\ell_{\infty}$ -adversarial attack:

$$\delta \propto \sqrt{\log(\# \textit{params})/\#\textit{train}}$$

## # 3. Invariance to noise levels

To obtain near-oracle performance.

Lasso:



 $\blacktriangleright$   $\ell_{\infty}$ -adversarial attack:

$$\delta \propto \sqrt{\log(\# \textit{params})/\#\textit{train}}$$

## Data model



### arXiv:2310.10807

 $\triangleright$   $\ell_2$ -adv. attacks and ridge regression.

### arXiv:2310.10807

- $\ell_2$ -adv. attacks and ridge regression.
- Generalization to other loss functions

### arXiv:2310.10807

- $\ell_2$ -adv. attacks and ridge regression.
- Generalization to other loss functions
- Connection to robust regression and  $\sqrt{Lasso}$ .