The Probability Flow ODE is Provably Fast

Sitan Chen (Harvard) Sinho Chewi (Yale) Holden Lee (Johns Hopkins) Yuanzhi Li (CMU) Jianfeng Lu (Duke) Adil Salim (Microsoft)

NeurIPS 2023

Diffusion models

Problem (Generative Modeling)

Learn a probability distribution from samples, and generate additional samples.
Diffusion models are a modern paradigm for generative modeling with state-of-the-art performance on image, audio, video generation, with applications to inverse problems, molecular modeling, etc.
Picture from Y. Song, Sohl-Dickstein, Kingma, et al. 2020.

What theoretical guarantees can we obtain for diffusion models? Show convergence

- given L^{2}-accurate score estimate,
- for general data distributions.

Expensive to evaluate; care about dependence on dimension d.

SDE vs. ODE formulation

Denoising Diffusion
 Probabilistic Modeling (SDE)

Probability Flow (ODE)

$$
\begin{aligned}
& d x_{t}^{\vec{~}}=-x_{t}^{\vec{t}} d t+\sqrt{2} d W_{t} \\
& d x_{t}^{\leftarrow}=x_{t}^{\leftarrow} d t+2 \underbrace{\nabla \log p_{T-t}\left(x_{t}^{\leftarrow}\right)}_{\approx s_{T-t}\left(x_{t}^{*}\right)} d t+\sqrt{2} d W_{t} .
\end{aligned}
$$

- Convergence guarantees with $O(d)$ steps. S. Chen, Chewi, Li, et al. 2023; H. Chen, Lee, and Lu 2023; Benton, De Bortoli, Doucet, et al. 2023
- Lower bound $\Omega(d)$ for trajectory-wise analysis, even for critically damped Langevin diffusion (S. Chen, Chewi, Li, et al. 2023).

$$
\begin{aligned}
& d x_{t}^{\overrightarrow{2}}=-x_{t}^{\overrightarrow{ }} d t-\nabla \log p_{t}\left(x_{t}^{\leftarrow}\right) d t \\
& d x_{t}^{\leftarrow}=x_{t}^{\leftarrow} d t+\underbrace{\nabla \log p_{T-t}\left(x_{t}^{\leftarrow}\right)}_{\approx s_{T-t}\left(x_{t}^{\leftarrow}\right)} d t
\end{aligned}
$$

- Much faster ($10 x-50 x$) in practice (J. Song, Meng, and Ermon 2020)...
- ...but can sometimes be less stable.
- This work: $O(\sqrt{d})$ steps using corrector steps.

The trouble with SDE's

DDPM:

$$
\begin{aligned}
& d x_{t}^{\leftarrow}=\left[x_{t}^{\leftarrow}+2 \nabla \log p_{T-t}\left(x_{t}^{\leftarrow}\right)\right] d t+\sqrt{2} d w_{t} \\
& x_{t+h}^{\leftarrow} \approx x_{t}^{\leftarrow}+h\left[x_{t}^{\leftarrow}+2 \nabla \log p_{T-t}\left(x_{t}^{\leftarrow}\right)\right]+\sqrt{2 h} \xi, \xi \sim N\left(0, I_{d}\right)
\end{aligned}
$$

Discretization error from...

- Drift term (order 1): $\quad O(L h \sqrt{d}) \rightarrow$ can take $h=O\left(\frac{1}{L \sqrt{d}}\right)$.
- Diffusion term (order $1 / 2$): $O(L \sqrt{h d}) \rightarrow$ need to take $h=O\left(\frac{1}{L^{2} d}\right)$.

Trajectories of Brownian motion are not smooth!
Probability flow ODE:

$$
d x_{t}^{\leftarrow}=\left[x_{t}^{\leftarrow}+\nabla \log p_{T-t}\left(x_{t}^{\overleftarrow{ }}\right)\right] d t
$$

Assumptions

Assumption

(1) p_{0} has second moment $\mathbb{E}_{p_{0}}\|x\|^{2}=\mathfrak{m}_{2}^{2}$.
(2) For each t_{k}, the score estimate $s_{t_{k}}$ has error

$$
\left\|\nabla \log p_{t_{k}}-s_{t_{k}}\right\|_{L^{2}\left(p_{t_{k}}\right)}^{2} \leq \varepsilon_{\mathrm{sc}}^{2} .
$$

(3) $\nabla \log p_{t}$ is L-Lipschitz for every t.
(9) The score estimate $s_{t_{k}}$ is L-Lipschitz for every t_{k}.

DPUM (Diffusion Predictor + Underdamped Modeling)

Theorem (DPUM, S. Chen, Chewi, Lee, et al. 2023)

Suppose that the Assumptions hold. If the score error satisfies $\varepsilon_{\mathrm{sc}} \leq \widetilde{O}\left(\frac{\varepsilon}{\sqrt{L}}\right)$, then the output of DPUM gives TV error ε with number of steps $N=\widetilde{\Theta}\left(\frac{L^{2} d^{1 / 2}}{\varepsilon}\right)$.

Algorithm (simplified)

Draw $\widehat{x}_{0} \sim N\left(0, I_{d}\right)$. For $n=0, \ldots, L T-1$:

- Predictor: Starting from $\widehat{x}_{n / L}$, run the discretized probability flow ODE from time $\frac{n}{L}$ to $\frac{n+1}{L}$ with step size $h_{\text {pred }}$ to obtain $\widehat{x}_{\frac{n+1}{L}}^{\prime}$.

$$
x_{t+h}^{\overleftarrow{ }}=e^{h} x_{t}^{\leftarrow}+\left(e^{h}-1\right) s_{T-t}\left(x_{t}^{\leftarrow}\right)
$$

- Corrector: Starting from $\widehat{x}_{\frac{n+1}{L}}^{\prime}$, run underdamped LMC for time $\frac{1}{\sqrt{L}}$ with step size $h_{\text {corr }}$ to obtain $\widehat{x}_{\frac{n+1}{L}}$.

Challenges

Problem: Cannot use Girsanov's Theorem with ODE's.
Solution: Use Wasserstein analysis with coupling.

- Score perturbation lemma: Bound the time derivative of score.

$$
\mathbb{E}\left[\left\|\partial_{t} \nabla \log q_{t}\left(y_{t}\right)\right\|^{2}\right] \lesssim L^{2} d\left(L+\frac{1}{t}\right)
$$

- By Grönwall, get error bounds within $\frac{1}{L}$ time.

Challenges

Problem: Cannot use Girsanov's Theorem with ODE's.
Solution: Use Wasserstein analysis with coupling.
Problem: Distance grows exponentially with rate L; can only run for time $O(1 / L)$.
Solution: Convert Wasserstein to TV error with a corrector step (short-time regularization). Using data processing inequality for TV distance, we can restart coupling.

- Predictor (P): Simulate the reverse SDE/ODE to track a time-varying distribution.
- Corrector (C): Run MCMC (e.g., Langevin Monte Carlo) to converge towards a stationary distribution.
- Predictor-corrector (PC): Intersperse P \& C steps.

Challenges

Problem: Cannot use Girsanov's Theorem with ODE's.
Solution: Use Wasserstein analysis with coupling.
Problem: Distance grows exponentially with rate L; can only run for time $O(1 / L)$.
Solution: Convert Wasserstein to TV error with a corrector step (short-time regularization). Using data processing inequality for TV distance, we can restart coupling.

Problem: Overdamped Langevin needs $O(d)$ steps.
Solution: Use underdamped Langevin (Langevin "with acceleration"), which needs $O(\sqrt{d})$ steps.

$$
\begin{aligned}
& d x_{t}=v_{t} d t \\
& d v_{t}=-\nabla f\left(x_{t}\right) d t-\gamma v_{t} d t+\sqrt{2 \gamma} d B_{t}
\end{aligned}
$$

Conclusion

- Using an ODE instead of SDE, in conjunction with underdamped corrector, reduces dimension dependence from $O(d)$ to $O(\sqrt{d})$.
- Questions:
- Can we relax smoothness assumptions?
- Is the corrector necessary?
- Is the higher error necessary?
- Other ways to improve parameter dependence and stability?

Bibliography I

Benton，Joe et al．（2023）．＂Linear convergence bounds for diffusion models via stochastic localization＂．In：arXiv preprint arXiv：2308．03686．
雷 Chen，Hongrui，Holden Lee，and Jianfeng Lu（2023）．＂Improved Analysis of Score－based Generative Modeling：User－Friendly Bounds under Minimal Smoothness Assumptions＂．In： arXiv preprint arXiv：2211．01916．
嗇 Chen，Sitan et al．（2023）．＂Sampling is as easy as learning the score：theory for diffusion models with minimal data assumptions＂．In：arXiv preprint arXiv：2209．11215．
凅 Chen，Sitan et al．（2023）．The probability flow ODE is provably fast．arXiv：2305．11798 ［cs．LG］．
囲 Song，Jiaming，Chenlin Meng，and Stefano Ermon（2020）．＂Denoising diffusion implicit models＂．In：arXiv preprint arXiv：2010．02502．
Rong，Yang et al．（2020）．＂Score－Based Generative Modeling through Stochastic Differential Equations＂．In：International Conference on Learning Representations．

