The Probability Flow ODE is Provably Fast

Sitan Chen (Harvard) Sinho Chewi (Yale) **Holden Lee** (Johns Hopkins) Yuanzhi Li (CMU) Jianfeng Lu (Duke) Adil Salim (Microsoft)

NeurIPS 2023

■ ▶ ▲ ■ ▶ ■ ■ ■ ● QQO

Problem (Generative Modeling)

Learn a probability distribution from samples, and generate additional samples.

Diffusion models are a modern paradigm for generative modeling with state-of-the-art performance on image, audio, video generation, with applications to inverse problems, molecular modeling, etc.

Picture from Y. Song, Sohl-Dickstein, Kingma, et al. 2020.

Forward SDE (data \rightarrow noise) $\mathbf{x}(0)$ $d\mathbf{x} = \mathbf{f}(\mathbf{x}, t)dt + g(t)d\mathbf{w}$ $\mathbf{x}(T)$ $\mathbf{x}(0)$ $\mathbf{x}($

What theoretical guarantees can we obtain for diffusion models? Show convergence

- given L^2 -accurate score estimate,
- for general data distributions.

Expensive to evaluate; care about dependence on dimension d.

SDE vs. ODE formulation

Denoising Diffusion Probabilistic Modeling (SDE)

$$dx_t^{\rightarrow} = -x_t^{\rightarrow} dt + \sqrt{2} dW_t$$

$$dx_t^{\leftarrow} = x_t^{\leftarrow} dt + 2 \underbrace{\nabla \log p_{T-t}(x_t^{\leftarrow})}_{\approx s_{T-t}(x_t^{\leftarrow})} dt + \sqrt{2} dW_t.$$

- Convergence guarantees with O(d) steps.
 S. Chen, Chewi, Li, et al. 2023; H. Chen, Lee, and Lu
 2023; Benton, De Bortoli, Doucet, et al. 2023
- Lower bound Ω(d) for trajectory-wise analysis, even for critically damped Langevin diffusion (S. Chen, Chewi, Li, et al. 2023).

Probability Flow (ODE)

$$dx_t^{\rightarrow} = -x_t^{\rightarrow} dt - \nabla \log p_t(x_t^{\leftarrow}) dt$$
$$dx_t^{\leftarrow} = x_t^{\leftarrow} dt + \underbrace{\nabla \log p_{T-t}(x_t^{\leftarrow})}_{\approx s_{T-t}(x_t^{\leftarrow})} dt.$$

- Much faster (10x-50x) in practice (J. Song, Meng, and Ermon 2020)...
- ...but can sometimes be less stable.
- This work: $O(\sqrt{d})$ steps using corrector steps.

▲ □ ▼ ▲ 山 ▼

DDPM:

$$dx_t^{\leftarrow} = [x_t^{\leftarrow} + 2\nabla \log p_{T-t}(x_t^{\leftarrow})] dt + \sqrt{2} dw_t$$
$$x_{t+h}^{\leftarrow} \approx x_t^{\leftarrow} + h [x_t^{\leftarrow} + 2\nabla \log p_{T-t}(x_t^{\leftarrow})] + \sqrt{2h}\xi, \ \xi \sim N(0, I_d).$$

Discretization error from...

- Drift term (order 1): $O(Lh\sqrt{d}) \rightarrow \text{can take } h = O\left(\frac{1}{L\sqrt{d}}\right).$
- Diffusion term (order 1/2): $O(L\sqrt{hd}) \rightarrow$ need to take $h = O(\frac{1}{L^2d})$. Trajectories of Brownian motion are not smooth!

Probability flow ODE:

$$dx_t^{\leftarrow} = [x_t^{\leftarrow} + \nabla \log p_{T-t}(x_t^{\leftarrow})] dt.$$

► < Ξ ► Ξ Ξ < < < </p>

Assumption

- p_0 has second moment $\mathbb{E}_{p_0} \|x\|^2 = \mathfrak{m}_2^2$.
- **2** For each t_k , the score estimate s_{t_k} has error

$$\|
abla \log p_{t_k} - s_{t_k}\|^2_{L^2(p_{t_k})} \leq arepsilon_{ ext{sc}}^2.$$

- **③** $\nabla \log p_t$ is *L*-Lipschitz for every *t*.
- The score estimate s_{t_k} is *L*-Lipschitz for every t_k .

Image: A image: A

315

DPUM (Diffusion Predictor + Underdamped Modeling)

Theorem (DPUM, S. Chen, Chewi, Lee, et al. 2023)

Suppose that the Assumptions hold. If the score error satisfies $\varepsilon_{sc} \leq \widetilde{O}(\frac{\varepsilon}{\sqrt{L}})$, then the output of DPUM gives TV error ε with number of steps $N = \widetilde{\Theta}\left(\frac{L^2 d^{1/2}}{\varepsilon}\right)$.

Algorithm (simplified)

Draw $\widehat{x}_0 \sim N(0, I_d)$. For $n = 0, \dots, LT - 1$:

• **Predictor:** Starting from $\hat{x}_{n/L}$, run the discretized probability flow ODE from time $\frac{n}{L}$ to $\frac{n+1}{L}$ with step size h_{pred} to obtain \hat{x}'_{n+1} .

$$x_{t+h}^{\leftarrow} = e^h x_t^{\leftarrow} + (e^h - 1) s_{\mathcal{T}-t}(x_t^{\leftarrow}).$$

• **Corrector:** Starting from $\hat{x}'_{\frac{n+1}{L}}$, run underdamped LMC for time $\frac{1}{\sqrt{L}}$ with step size h_{corr} to obtain $\hat{x}_{\frac{n+1}{L}}$.

Challenges

Problem: Cannot use Girsanov's Theorem with ODE's. Solution: Use **Wasserstein analysis** with coupling.

• Score perturbation lemma: Bound the time derivative of score.

$$\mathbb{E}[\|\partial_t
abla \log q_t^{
ightarrow}(y_t)\|^2] \lesssim L^2 d\left(L+rac{1}{t}
ight).$$

• By Grönwall, get error bounds within $\frac{1}{L}$ time.

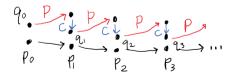
< 3 >

315

Problem: Cannot use Girsanov's Theorem with ODE's. Solution: Use **Wasserstein analysis** with coupling.

Problem: Distance grows exponentially with rate L; can only run for time O(1/L). Solution: Convert Wasserstein to TV error with a **corrector** step (short-time regularization). Using data processing inequality for TV distance, we can restart coupling.

- **Predictor (P):** Simulate the reverse SDE/ODE to track a *time-varying* distribution.
- **Corrector (C):** Run MCMC (e.g., Langevin Monte Carlo) to converge towards a *stationary* distribution.
- Predictor-corrector (PC): Intersperse P & C steps.



Problem: Cannot use Girsanov's Theorem with ODE's. Solution: Use **Wasserstein analysis** with coupling.

Problem: Distance grows exponentially with rate L; can only run for time O(1/L). Solution: Convert Wasserstein to TV error with a **corrector** step (short-time regularization). Using data processing inequality for TV distance, we can restart coupling.

Problem: Overdamped Langevin needs O(d) steps. Solution: Use **underdamped Langevin** (Langevin "with acceleration"), which needs $O(\sqrt{d})$ steps.

$$dx_t = v_t dt$$

 $dv_t = -
abla f(x_t) dt - \gamma v_t dt + \sqrt{2\gamma} dB_t$

> < = > = = < < <

• Using an ODE instead of SDE, in conjunction with underdamped corrector, reduces dimension dependence from O(d) to $O(\sqrt{d})$.

• Questions:

- Can we relax smoothness assumptions?
- Is the corrector necessary?
- Is the higher error necessary?
- Other ways to improve parameter dependence and stability?

- Benton, Joe et al. (2023). "Linear convergence bounds for diffusion models via stochastic localization". In: *arXiv preprint arXiv:2308.03686*.
- Chen, Hongrui, Holden Lee, and Jianfeng Lu (2023). "Improved Analysis of Score-based Generative Modeling: User-Friendly Bounds under Minimal Smoothness Assumptions". In: arXiv preprint arXiv:2211.01916.
- Chen, Sitan et al. (2023). "Sampling is as easy as learning the score: theory for diffusion models with minimal data assumptions". In: *arXiv preprint arXiv:2209.11215*.
- Chen, Sitan et al. (2023). The probability flow ODE is provably fast. arXiv: 2305.11798 [cs.LG].
- Song, Jiaming, Chenlin Meng, and Stefano Ermon (2020). "Denoising diffusion implicit models". In: *arXiv preprint arXiv:2010.02502*.
- Song, Yang et al. (2020). "Score-Based Generative Modeling through Stochastic Differential Equations". In: International Conference on Learning Representations.

★ ∃ ► ★ ∃ ► ■ ∃ = 𝒫 𝔅 𝔅