

NEURAL INFORMATION PROCESSING SYSTEMS

Fairness Continual Learning Approach to Semantic Scene Understanding in Open-World Environments

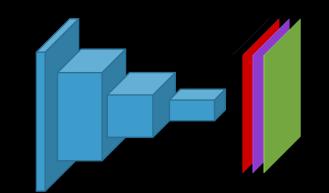
Thanh-Dat Truong¹, Hoang-Quan Nguyen¹, Bhiksha Raj^{2,3}, Khoa Luu¹ ¹CVIU Lab, University of Arkansas ²Carnegie Mellon University ³Mohammed Bin Zayed University of Al

https://uark-cviu.github.io/

)ata Analytics that are Robust and Trusted

Input

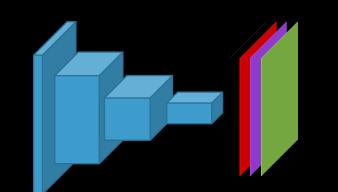
Step 1



Prediction

Ground Truth

Input



Prediction

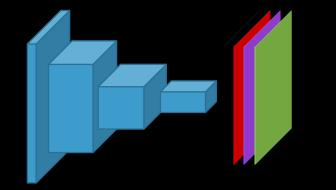
Ground Truth

Step 2

Input

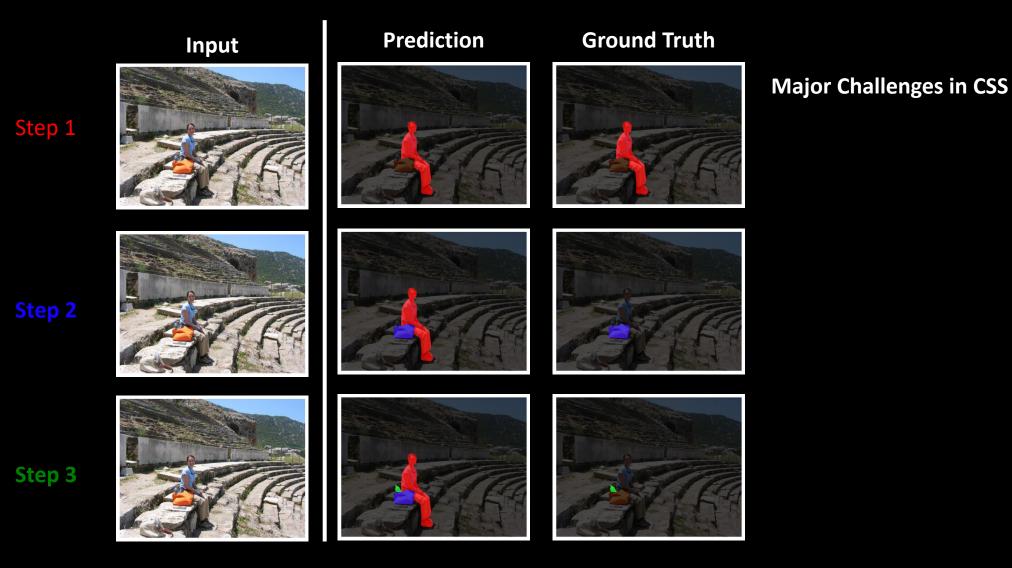
Step 1

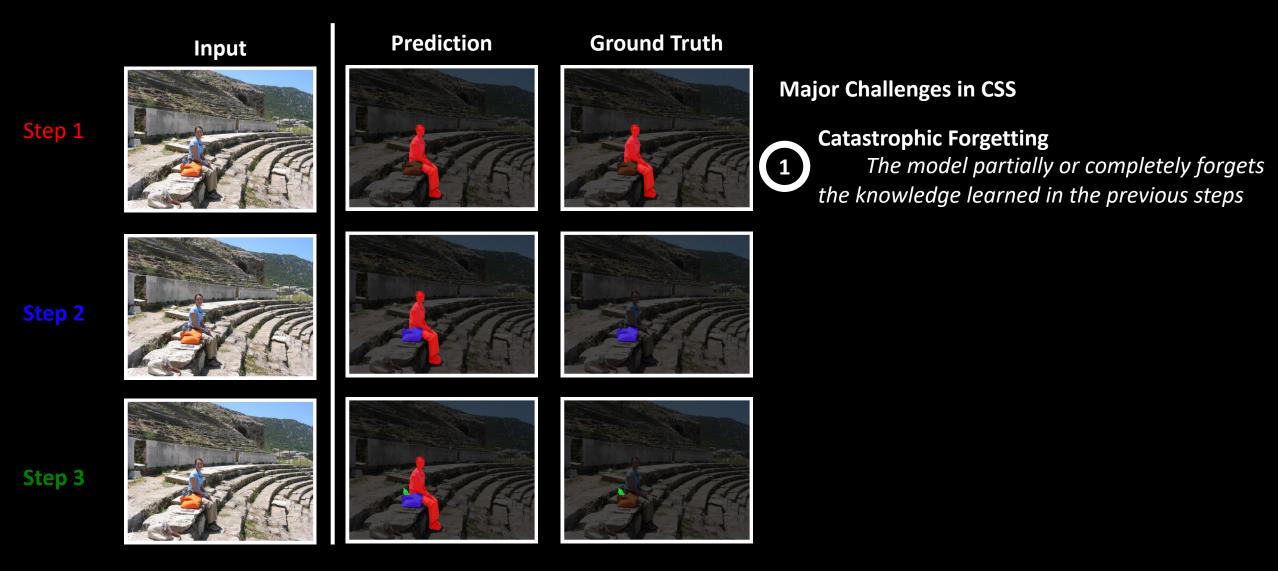
Step 3

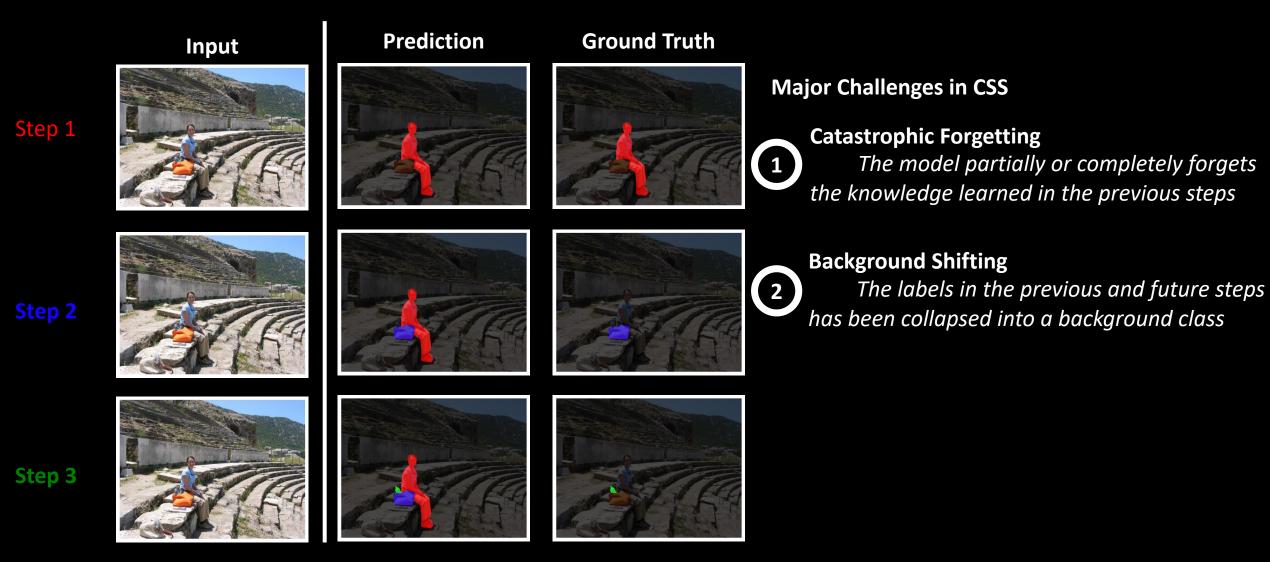


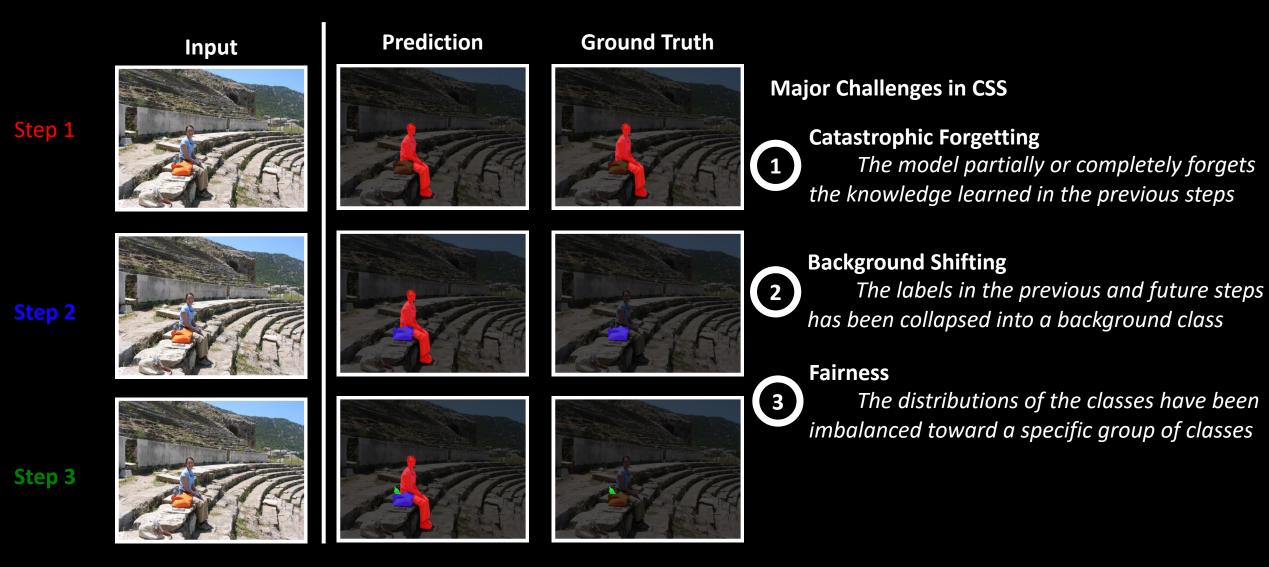
Prediction

Ground Truth

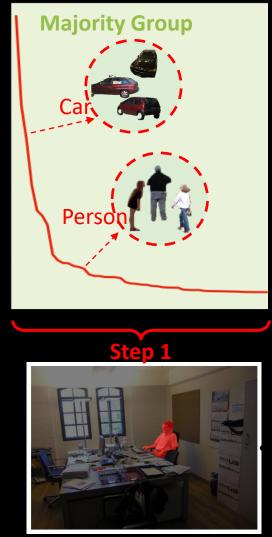




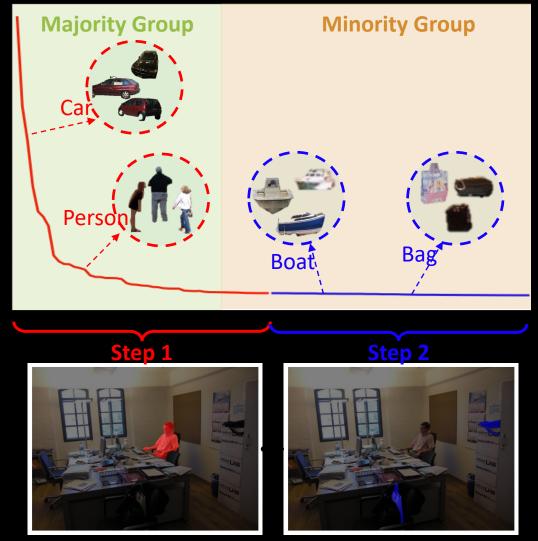




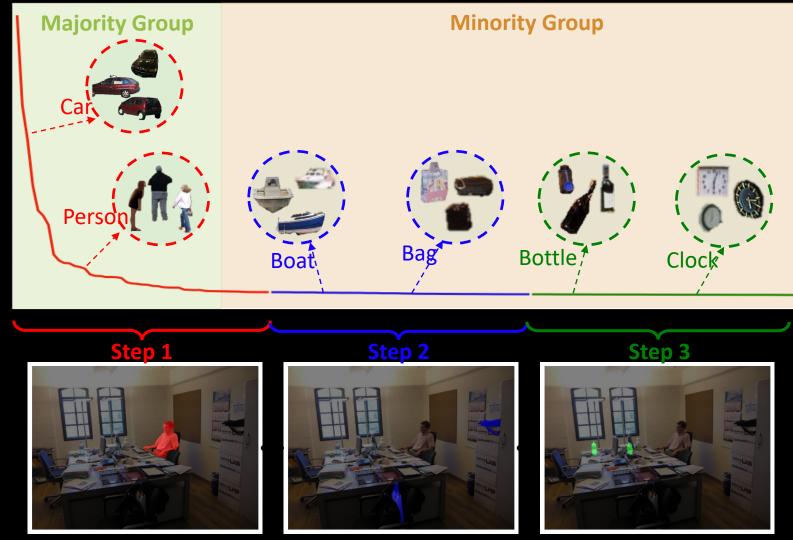
The Class Distribution based on the Number of Pixels



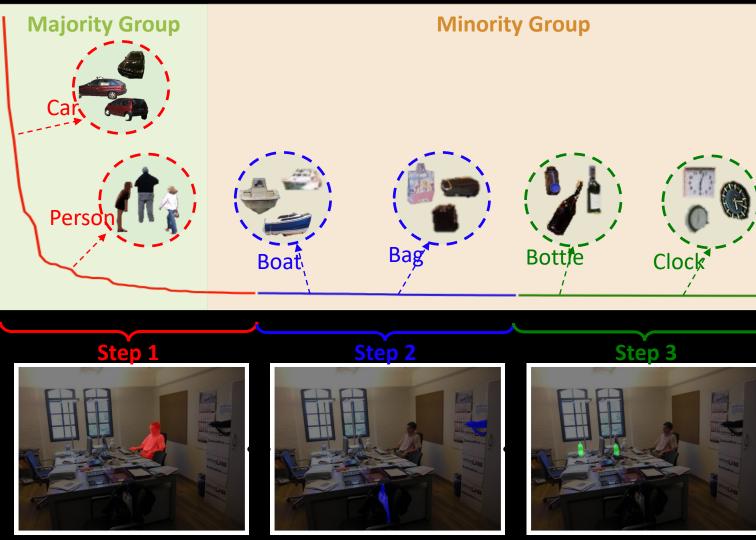
The Class Distribution based on the Number of Pixels



The Class Distribution based on the Number of Pixels



The Class Distribution based on the Number of Pixels



The distribution of classes in the majority group in the task dominates the ones in the minority groups in the later tasks

The model behaves unfairly among classes

Contributions

Introduce a novel fairness metric for continual semantic segmentation

Propose new Fairness Continual Learning approach to Semantic Segmentation

- Promote fairness by a new fairness loss based on the class distribution
- Impose consistency of segmentation maps by a Conditional Structural Consistency Loss
- Model the catastrophic forgetting and background shift problems via the new Prototypical Contrastive Clustering loss
- Proved as a new, generalized continual learning paradigm of knowledge distillation

Achieve State-of-the-Art Performance on Continual Semantic Segmentation benchmarks and Promote Fairness of the model predictions

Fairness Objective

$$\theta^* = \operatorname*{argmin}_{\theta} \mathbb{E}_{x,y} \mathcal{L}(y, \widehat{y})$$

Subject to:

$$\max_{c_a,c_b} \left| \mathbb{E}_{x,y} \sum_{i,j} \mathcal{L}(y_{i,j} = c_a) - \mathbb{E}_{x,y} \sum_{i,j} \mathcal{L}(y_{i,j} = c_b) \right| \leq \epsilon$$

Impose the Fair Behavior of the Model by Maintaining the Small Difference of Error Rates Between Classes

Fairness Objective

$$\max_{c_a,c_b} \left| \mathbb{E}_{\boldsymbol{x},\boldsymbol{y}} \sum_{i,j} \mathcal{L}(\boldsymbol{y}_{i,j} = c_a) - \mathbb{E}_{\boldsymbol{x},\boldsymbol{y}} \sum_{i,j} \mathcal{L}(\boldsymbol{y}_{i,j} = c_b) \right| \leq 2C \mathbb{E}_{\boldsymbol{x},\boldsymbol{y}} \mathcal{L}(\boldsymbol{y}, \widehat{\boldsymbol{y}})$$

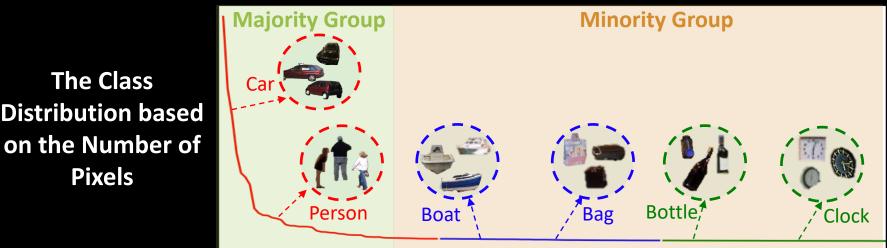
The Fairness Objective Is Also Imposed by the Loss

Fairness Objective

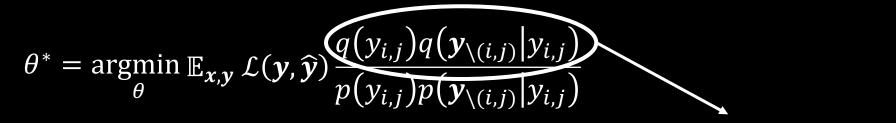
$$\begin{aligned} \theta^* &= \operatorname*{argmin}_{\theta} \mathbb{E}_{\boldsymbol{x},\boldsymbol{y}} \mathcal{L}(\boldsymbol{y}, \widehat{\boldsymbol{y}}) \\ &= \operatorname*{argmin}_{\theta} \int \mathcal{L}(\boldsymbol{y}, \widehat{\boldsymbol{y}}) p(\boldsymbol{y}), p(\widehat{\boldsymbol{y}}) \boldsymbol{dy} d\widehat{\boldsymbol{y}} \\ &= \operatorname*{argmin}_{\theta} \int \mathcal{L}(y_{i,j}, \widehat{y}_{i,j}) p(\boldsymbol{y}_{i,j}) p(\boldsymbol{y}_{i,j}) p(\widehat{\boldsymbol{y}}) \boldsymbol{dy} d\widehat{\boldsymbol{y}} \end{aligned}$$

Suffer Imbalance Distributions

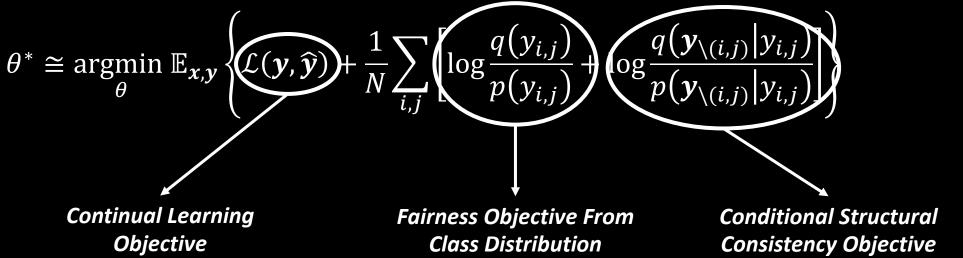
The Gradients Produced in the Majority Group Largely Dominant the Ones in the Minority Group

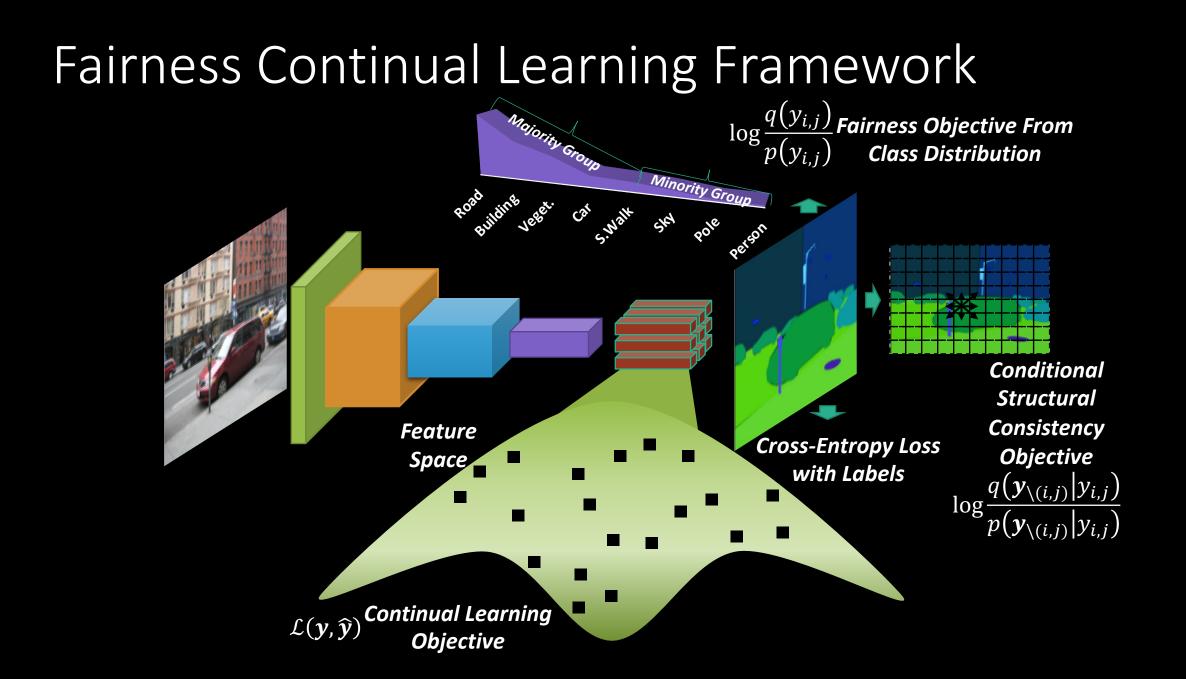


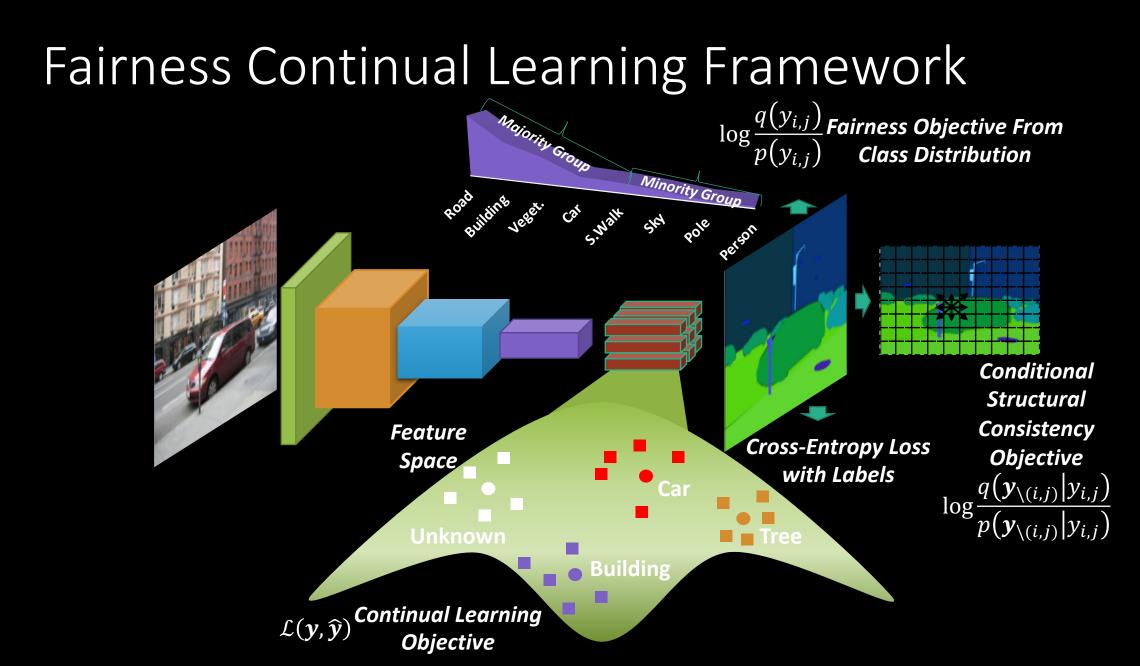
Fairness Continual Learning Approach



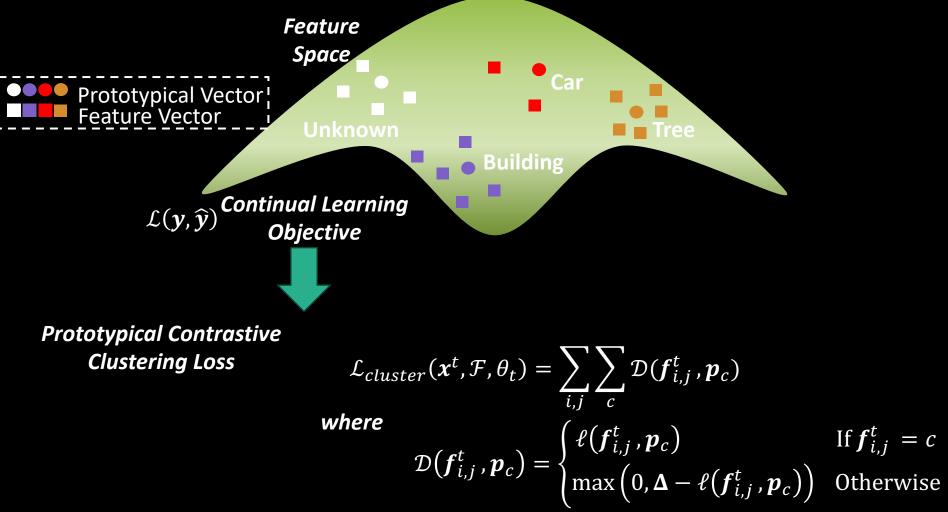
Ideal Distributions Where the Learned Model Behave Fairly







Fairness Continual Learning Framework



Thank You For Watching