

Generalizing Importance Weighting to A Universal Solver for Distribution Shift Problems

Tongtong Fang¹

Nan Lu^{2,3}

Masashi Sugiyama^{3,1}

¹ Univ. of Tokyo, Japan,
² Univ. of Tübingen, Germany,
³ RIKEN, Japan

Two-levels of distribution shift

- Two levels of distribution shift (DS) $p_{tr}(x, y) \neq p_{te}(x, y)$:
 - $\circ~$ The data distribution itself changes, e.g., covariate shift
 - \circ The underlying *support*^{*} of data distribution changes.

* The set where the probability density is non-zero.

• The relationship between the training and test support

- Existing methods are good at cases (i) & (ii)
- Cases (iii) & (iv) are common due to data-collection biases

A real-world example of case (iii)

Family Felidae (猫科, ネコ科)

Training data: Tiger, ocelot, cat, leopard, puma, caracal, lion...

Test data: Tiger, ocelot, cat, leopard, puma, caracal, lion...

Pictures are from Wikimedia Commons.

Importance weighting (IW) & dynamic IW

• Problem setting:

• A training set $\{(x_i^{\text{tr}}, y_i^{\text{tr}})\}_{i=1}^{n_{\text{tr}}} \sim p_{\text{tr}}(x, y)$ & a validation set $\{(x_i^{\text{v}}, y_i^{\text{v}})\}_{i=1}^{n_{\text{v}}} \sim p_{\text{te}}(x, y), n_{\text{tr}} \gg n_{\text{v}}$

• Estimate the risk: $R(f) = \mathbb{E}_{p_{te}(x,y)}[\ell(f(x), y)].$

• IW is a golden solver for DS in cases (i) and (ii)^[1]

- Dynamic IW (DIW) makes IW work well for deep learning^[2]
- However, IW methods are problematic in cases (iii) & (iv)

M. Sugiyama et al., Machine learning in non-stationary environments: Introduction to covariate shift adaptation. The MIT Press, 2012.
T. Fang et al., Rethinking importance weighting for deep learning under distribution shift. In NeurIPS, 2020.

A deeper understanding of IW

- Recall that the risk is: $R(f) = \mathbb{E}_{p_{te}(x,y)}[\ell(f(x), y)]$
- The objective of IW is: $J(f) = \mathbb{E}_{p_{tr}(x,y)}[w^*(x,y)\ell(f(x),y)]$

Definition: Given an (expected) objective J(f), it is risk-consistent if J(f) = R(f) for any f, i.e., the objective is equal to the original risk for any classifier; it is classifier-consistent if $\arg\min_{f} J(f) = \arg\min_{f} R(f)$ where the minimization is taken over all measurable functions, i.e., the objective shares the optimal classifier with the original risk.

Theorem 1. In cases (i) and (ii), IW is risk-consistent.

Theorem 2. In cases (iii) and (iv), IW is risk-inconsistent, and it holds that J(f) < R(f) for any f.

Two concrete examples

- Task: classify red/blue data
- Data:
 - Train: left two squares
 - Test: all four squares
 - Validation: 1 data per square

• Methods:

- Val-only: use only validation data to train the model
- IW: importance weighting
- \circ GIW: the proposed method

Generalized importance weighting (GIW)

- We split the test support S_{te} into in-training $S_{te} \cap S_{tr}$ and out-of-training $S_{te} \setminus S_{tr}$ parts.
- A support-splitting variable $s \in \{0,1\}$, then

 $p(\mathbf{x}, y, s) = \begin{cases} p_{\text{te}}(\mathbf{x}, y) & \text{if } (\mathbf{x}, y) \in \mathcal{S}_{\text{tr}} \text{ and } s = 1, \text{ or } (\mathbf{x}, y) \in \mathcal{S}_{\text{te}} \setminus \mathcal{S}_{\text{tr}} \text{ and } s = 0, \\ 0 & \text{if } (\mathbf{x}, y) \in \mathcal{S}_{\text{tr}} \text{ and } s = 0, \text{ or } (\mathbf{x}, y) \in \mathcal{S}_{\text{te}} \setminus \mathcal{S}_{\text{tr}} \text{ and } s = 1. \end{cases}$

• Expected objective of GIW is:

 $J_{G}(f) = \alpha \mathbb{E}_{p_{tr}(x,y)}[w^{*}(x,y)\ell(f(x),y)] + (1-\alpha)\mathbb{E}_{p(x,y|s=0)}[\ell(f(x),y)],$ in-training (IT) out-of-training (OOT) where $\alpha = p(s=1)$.

• In cases (i) and (ii), GIW is reduced to IW since $\alpha = 1$.

Theorem 4. *GIW is always risk-consistent for distribution shift problems.*

Implementation of GIW

- Split validation data and estimate α
 - o Pretrain on training data to obtain a feature extractor
 - Train a one-class SVM^[3] on latent representation of training data
 - Split validation data into IT $\{(x_i^{v1}, y_i^{v1})\}_{i=1}^{n_{v1}} \& OOT \{(x_i^{v2}, y_i^{v2})\}_{i=1}^{n_{v2}}$ parts by the one-class SVM
 - Estimate α as $\hat{\alpha} = \frac{n_{v1}}{n_v}$
- Empirical objective of GIW is:

$$\hat{J}_G(\boldsymbol{f}) = \frac{n_{\text{v1}}}{n_{\text{v}}n_{\text{tr}}} \sum_{i=1}^{n_{\text{tr}}} \widehat{w}(\boldsymbol{x}_i^{\text{tr}}, y_i^{\text{tr}}) \ell(\boldsymbol{f}(\boldsymbol{x}_i^{\text{tr}}), y_i^{\text{tr}}) + \frac{1}{n_{\text{v}}} \sum_{j=1}^{n_{\text{v2}}} \ell(\boldsymbol{f}(\boldsymbol{x}_j^{\text{v2}}), y_j^{\text{v2}}).$$

Experiments

- Two distribution shift (DS) patterns
 - Support shift: DS solely comes from the support mismatch
 - Support-distribution shift: add DS on top of the support shift
- Setups & results*

* Results of support-distribution shift here are on MNIST; results on more datasets/baselines can be found in the paper.

Thanks for your attention!