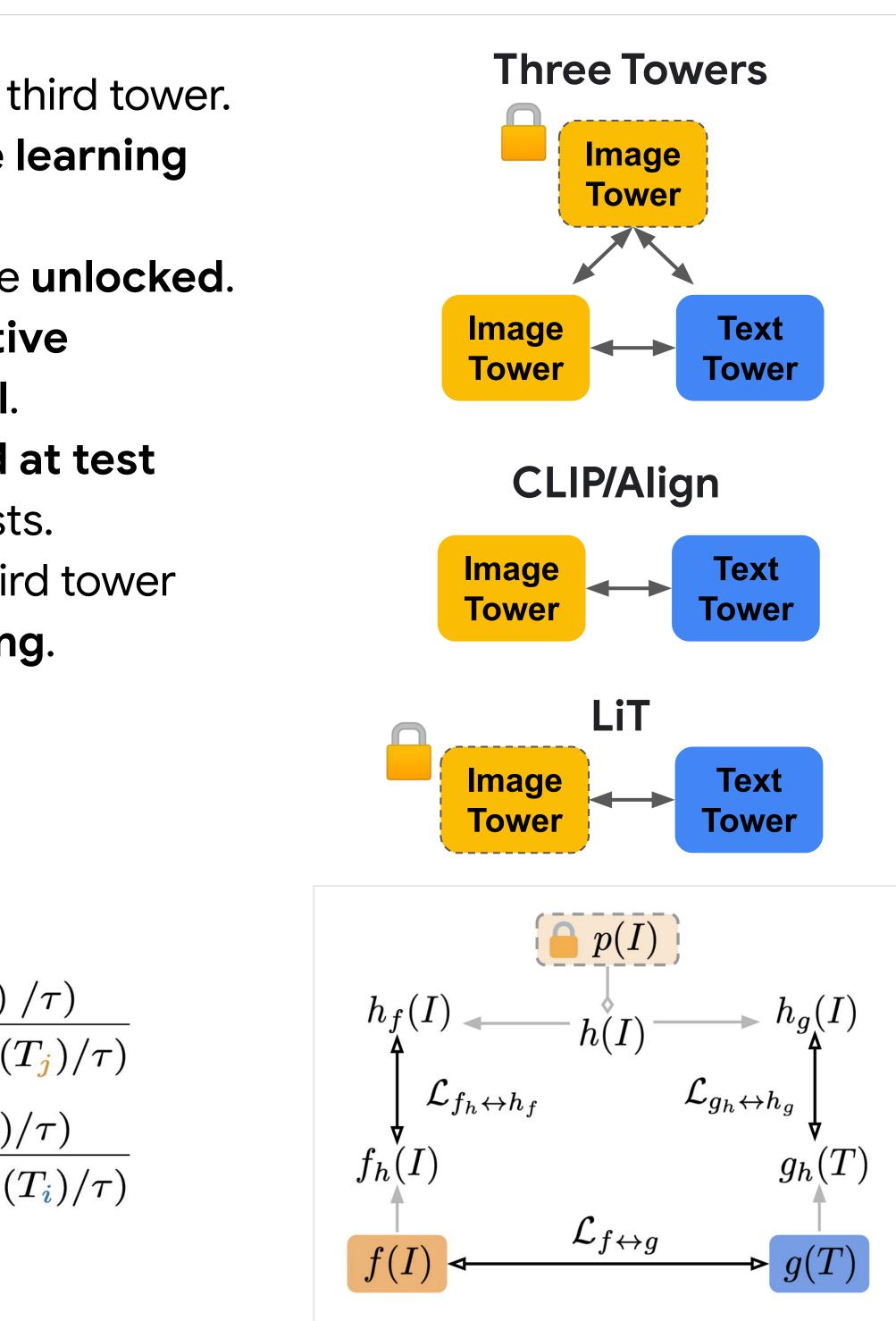
Google Research

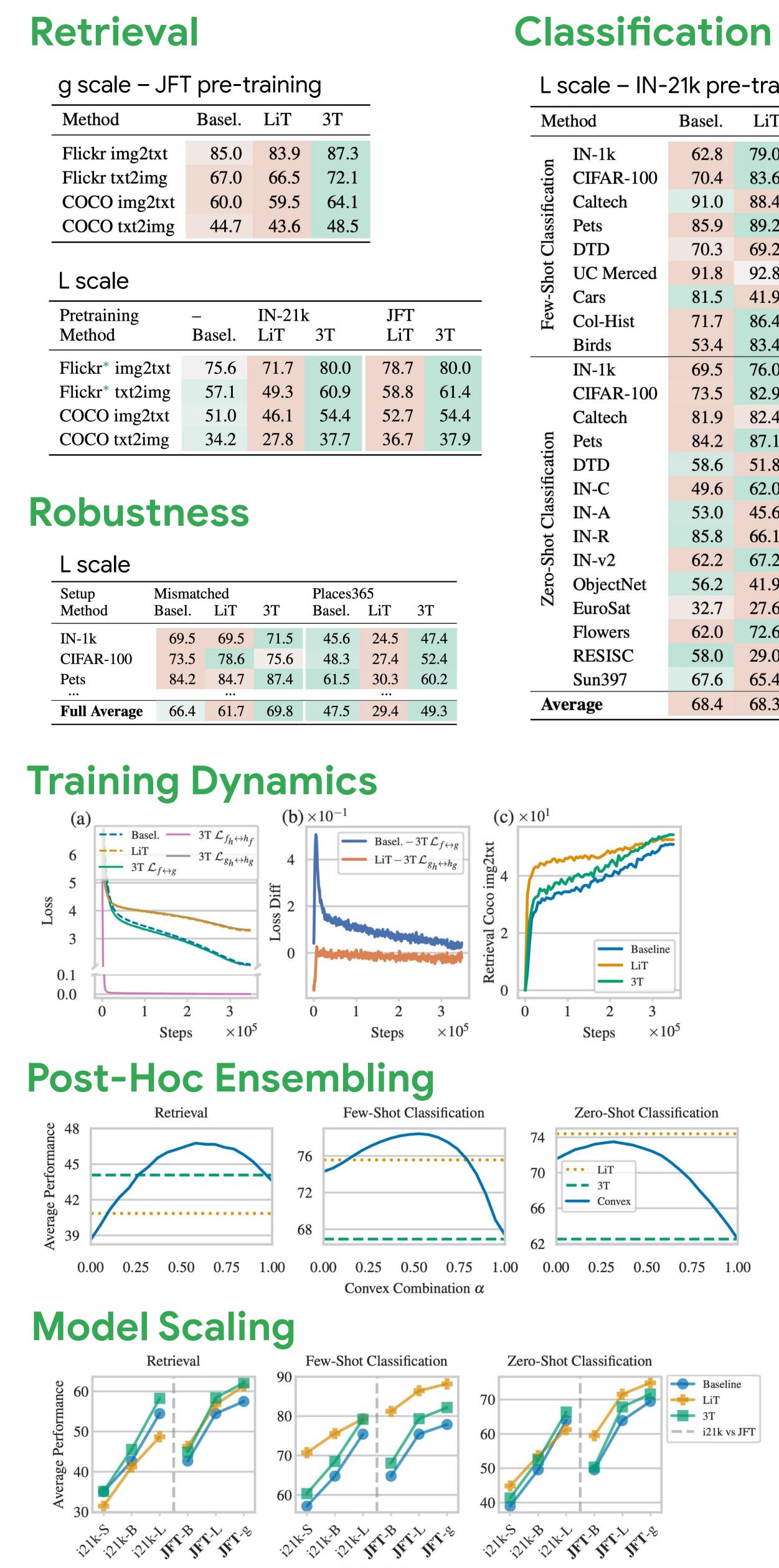
Three Towers: Flexible Contrastive Learning with Pretrained Image Models

- image tower with frozen embeddings from a pretrained classifier.
- With Three Towers (3T) we introduce a third tower that contains the frozen pretrained embeddings.
- We encourage alignment between the third tower and the main image-text towers with additional losses.
- This is a more **flexible strategy** that allows the **image tower** to **benefit** from both pretrained embeddings and contrastive training.
- For retrieval tasks, 3T consistently improves over LiT and the CLIP-style from-scratch baseline.
- For classification tasks, 3T reliably improves over CLIP and while it for ImageNet-21k and Places365 pretraining.
- The pretrained model is **locked** in a third tower.
- Objective = Average of **contrastive learning** objectives between all towers.
- The main image and text towers are unlocked. → They benefit from both **contrastive** learning and the pretrained model.
- The third tower is usually **discarded at test time** \rightarrow No additional inference costs.
- The contrastive objectives to the third tower effectively perform transfer learning.

$$\mathcal{L}_{3\mathrm{T}} = \frac{1}{3} \cdot \left(\mathcal{L}_{f \leftrightarrow g} + \mathcal{L}_{f_h \leftrightarrow h_f} + \mathcal{L}_{g_h \leftrightarrow h_g} \right)$$


$$\mathcal{L}_{f \leftrightarrow g} = \frac{1}{2} (\mathcal{L}_{f \rightarrow g} + \mathcal{L}_{g \rightarrow f})$$
$$\mathcal{L}_{f \rightarrow g} = -\frac{1}{N} \sum_{i=1}^{N} \log \frac{\exp(f(I_i)^\top g(T_i))}{\sum_{j=1}^{N} \exp(f(I_i)^\top g(T_i))}$$
$$\mathcal{L}_{g \rightarrow f} = -\frac{1}{N} \sum_{i=1}^{N} \log \frac{\exp(f(I_i)^\top g(T_i))}{\sum_{j=1}^{N} \exp(f(I_j)^\top g(T_i))}$$

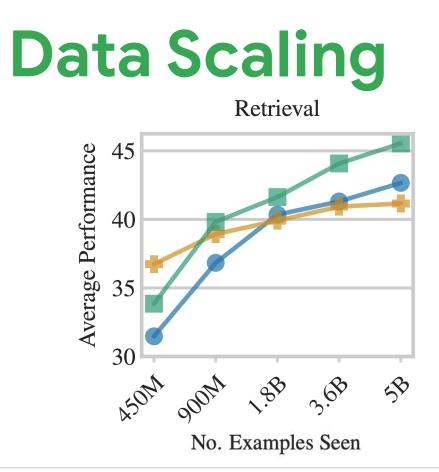
Nethod


Jannik Kossen*, Mark Collier*, Basil Mustafa, Xiao Wang, Xiaohua Zhai, Lucas Beyer, Andreas Steiner, Jesse Berent, Rodolphe Jenatton, Efi Kokiopoulou OATML Oxford, Google DeepMind, Google Research Contact: jannik.kossen@cs.ox.ac.uk & markcollier@google.com

• Contrastive vision-language models are usually trained from scratch. • LiT (Zhai et al., 2022) has shown performance gains by replacing the learned

underperforms relative to LiT for JFT-pretrained models, it outperforms LiT

arXiv:2305.16999


1k pre-training				
Basel.	LiT	3T		
62.8	79.0	68.0		
70.4	83.6	72.5		
91.0	88.4	92.3		
85.9	89.2	86.5		
70.3	69.2	73.3		
91.8	92.8	94.0		
81.5	41.9	84.9		
71.7	86.4	76.6		
53.4	83.4	65.0		
69.5	76.0	71.7		
73.5	82.9	73.4		
81.9	82.4	84.1		
84.2	87.1	87.0		
58.6	51.8	60.3		
49.6	62.0	51.8		
53.0	45.6	54.3		
85.8	66.1	88.1		
62.2	67.2	64.9		
56.2	41.9	58.3		
32.7	27.6	42.8		
62.0	72.6	65.7		
58.0	29.0	57.9		
67.6	65.4	68.7		
68.4	68.3	71.4		

g scale – JFT pre-training				
Method		Basel.	LiT	3T
Few-Shot Classification	IN-1k	62.8	81.3	67.7
	CIFAR-100	70.4	83.2	74.3
fica	Caltech	91.0	89.0	91.8
assi	Pets	85.9	96.8	88.4
Cla	DTD	70.3	72.1	72.4
hot	UC Merced	91.8	95.5	93.1
S-∽	Cars	81.5	92.9	87.1
Fev	Col-Hist	71.7	81.3	77.0
	Birds	53.4	85.6	62.4
uo	IN-1k	69.5	80.1	72.0
	CIFAR-100	73.5	80.1	75.2
	Caltech	81.9	79.5	82.5
	Pets	84.2	96.3	88.7
cati	DTD	58.6	59.0	59.0
sifi	IN-C	49.6	68.1	52.8
Zero-Shot Classifi	IN-A	53.0	69.1	56.4
ot (IN-R	85.8	91.7	88.4
-Sh	IN-v2	62.2	74.0	65.4
ero	ObjectNet	56.2	61.9	59.3
N	EuroSat	32.7	36.6	54.7
	Flowers	62.0	76.7	66.6
	RESISC	58.0	58.9	60.9
	Sun397	67.6	69.7	68.1
Average		68.4	77.4	72.4

	Difference to 3T
Rerun	-0.22 ± 0.25
No $\mathcal{L}_{f\leftrightarrow g}$ Loss	-26.63 ± 10.61
No $\mathcal{L}_{f_h\leftrightarrow h_f}$ Loss	-1.19 ± 0.75
No $\mathcal{L}_{g_h \leftrightarrow h_g}$ Loss	-2.77 ± 0.91
Head Variants	0.09 ± 0.35
MLP Embedding	-0.08 ± 0.35
More Temperatures	-0.26 ± 0.48
Loss Weights	0.17 ± 0.53
L2 Transfer	-3.80 ± 1.13
3T Finetuning	1.85 ± 1.27

	Difference to LiT
Rerun	-0.10 ± 0.22
LiT Finetune	-14.99 ± 6.09
FlexiLiT1	-4.63 ± 1.36
FlexiLiT2	-5.04 ± 1.54

