

Diffusion Models and Semi-Supervised Learners Benefit Mutually with Few Labels

Zebin You, Yong Zhong, Fan Bao, Jiacheng Sun, Chongxuan Li, Jun Zhu Project page: https://ml-gsai.github.io/DPT-demo Paper: https://arxiv.org/2302.10586

Key question in Diffusion Model

NEURAL INFORMATION PROCESSING SYSTEMS

unlabeled data

Key question in Semi-supervised Classification

generated images

useful?

Classifier

Our method

All Real Images with Pseudo Labels

Conditional Generative Model

Pseudo Images with Uniform Labels

"panda"

Real Data Augmented by Pseudo Ones

"bird" "panda"

3

"bird" "panda"

↓ Training
↓ Predicting
↓ Sampling

Partially Labeled Real Images

"bird" "panda"

1

Diffusion Models and Semi-Supervised Learners Benefit Mutually with Few Labels, You et al, NeurIPS 2023

"bird"

2

Quantitative experimental results

NEURAL INFORMATION

PROCESSING SYSTEMS

Diffusion Models and Semi-Supervised Learners Benefit Mutually with Few Labels, You et al, NeurIPS 2023

Qualitative experimental results

Diffusion Models and Semi-Supervised Learners Benefit Mutually with Few Labels, You et al, NeurIPS 2023

Summary

- We introduce DPT, a simple but effective method designed to push the boundaries of semi supervised diffusion models and classifiers.
- We believe that DPT will inspire future explorations in diffusion models and semi-supervised learning.

Email: zebin@ruc.edu.cn