
LLMs Can Implement Policy Iteration

Ethan Brooks1 , Logan Walls2 , Richard L. Lewis2 , Satinder Singh1

1Computer Science and Engineering, University of Michigan
2Department of Psychology, University of Michigan

1

LLMs Can Implement Policy Iteration

1. Feed the MDP into the LLM.
2. Use the LLM to estimate value.
3. Use these estimates in Policy Iteration.

2

3

Results Overview

LLM goes from random to near-optimal performance in 100s
of time-steps.
• Domains are toy / text-based

Only large models learn:
• GPT-J (6B params): doesn’t learn

• InCoder (6.7B params): doesn’t learn

• OPT (30B params): doesn’t learn

• code-cushman-001: learns inconsistently

• code-cushman-002: learns consistently

Interacting with the environment

During episode:
• Observes state
• For each ac.on in ac.on space:

• Compute value given state and acDon
• Choose ac.on with highest value
• Receive reward and next state.
• Add interac.on to replay buffer
• We use the LLM to compute value.

4

6

Estimating 𝑄! 𝑠" , 𝑎 Values

• Generate rollout sampled from current policy 𝜋 starting
with action, 𝑎
• Use LLM to alternately model
• transition (next-state, reward, termination)
• current policy

• Use rollout to estimate value:
• 𝑄! 𝑠", 𝑎 = ∑#$"% 𝛾%&#𝑟#
• Result is unbiased Monte-Carlo estimate

Navigate to goal state and “try” it.

Chain Environment

• Initial state
• Agent spawns randomly

• Actions
• Left
• Right
• “Try goal”

• Reward
• 1 for “try goal” on state 4
• 0 otherwise

• Termination
• On “try goal” (any state)
• After fixed time limit

State 1 2 3 4 5 6 7 8
Reward
(on try-goal) 0 0 0 1 0 0 0 0

🏆 🏃

7

LLM as Next-State Model
state == 2
right
state == 3

state == 6
right
state == 7

state == 0
right
state == 1

state == 4
right
state == 5

Prefix
demonstrates
that right
increments state

LLM generalizes
to suffix state

Random
transitions

State 1 2 3 4 5 6 7 8
Reward
(on try-goal) 0 0 0 1 0 0 0 0

🏆 🏃

8

LLM as Reward Model
state == 2
right
reward == 0

state == 4
right
reward == 1

state == 0
right
reward == 0

state == 4
right
reward == 1

Prefix
demonstrates
that state 4 is
the goal

LLM infers
reward for suffix
state

Random
transitions

State 1 2 3 4 5 6 7 8
Reward
(on try-goal) 0 0 0 1 0 0 0 0

🏆 🏃

9

LLM as Policy
state == 2
right
reward == 0

state == 5
left
reward == 0
state == 4
try goal
reward == 1

state == 1
right

Policy moves
right when
state < 4

LLM generalizes
to suffix state

Policy moves
left when
state > 4

Trajectories
sampled
from recent
episodes

State 1 2 3 4 5 6 7 8
Reward
(on try-goal) 0 0 0 1 0 0 0 0

🏆 🏃

10

Policy Improvement

≈

≈

Behavior Policy

𝜋

𝜋!

Prompt Policy

𝜋"#$%"&

𝜋"#$%"&!

Behavior Policy

𝜋!

𝜋!!argmax
!

&𝑄"!"##"$%
& (ℎ#$%, 𝑎)

argmax
!

&𝑄"!"##"$% (ℎ#$%, 𝑎)

…

𝜋#$''$(&

𝜋#$''$(&!

Rollout Policy

≈

≈

𝑉) ≈ 𝑉)!"#$!% ≤ 𝑉)& ⋯≈ 𝑉)"#''#(% ≈ 𝑉)!"#$!%
& ≤ 𝑉)&&≈ 𝑉)"#''#(%

&

11

12

Our method in red
(lower is better)

Why RL + LLMs is a happy marriage

• RL can leverage knowledge distilled in LLMs to learn
rapidly.

• LLMs can use RL to improve without further (gradient-
based) training.

13

