

LLMs Can Implement Policy Iteration

Ethan Brooks¹, Logan Walls², Richard L. Lewis², Satinder Singh¹ ¹Computer Science and Engineering, University of Michigan ²Department of Psychology, University of Michigan

LLMs Can Implement Policy Iteration

- 1. Feed the MDP into the LLM.
- 2. Use the LLM to *estimate value*.
- 3. Use these estimates in Policy Iteration.

Results Overview

LLM goes from random to near-optimal performance in **100s** of time-steps.

• Domains are toy / text-based

Only large models learn:

- GPT-J (6B params): doesn't learn
- InCoder (6.7B params): doesn't learn
- OPT (30B params): doesn't learn
- code-cushman-001: learns inconsistently
- code-cushman-002: learns consistently

Interacting with the environment

During episode:

- Observes state
- For each action in action space:
 - Compute value given state and action
- Choose action with highest value
- Receive reward and next state.
- Add interaction to replay buffer
- We use the LLM to compute value.

Estimating $Q^{\pi}(s_t, a)$ Values

- Generate rollout sampled from current policy π starting with action, a
- Use LLM to alternately model
 - transition (next-state, reward, termination)
 - current policy
- Use rollout to estimate value:
 - $Q^{\pi}(s_t, a) = \sum_{u=t}^T \gamma^{T-u} r_u$
 - Result is unbiased Monte-Carlo estimate

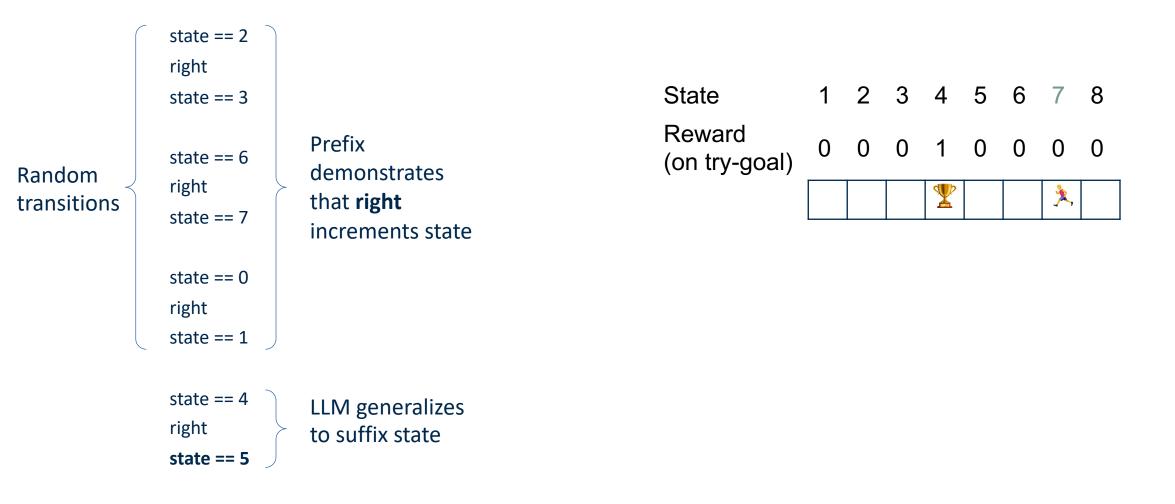
Chain Environment

Navigate to goal state and "try" it.

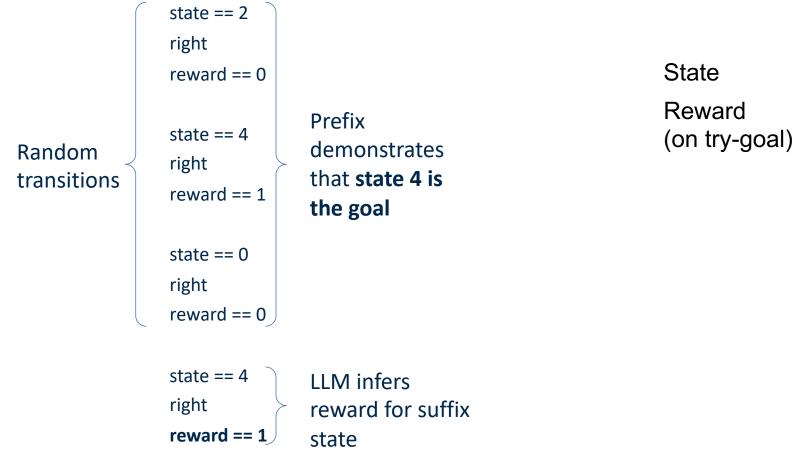
- Initial state
 - Agent spawns randomly
- Actions
 - Left
 - Right
 - "Try goal"
- Reward
 - 1 for "try goal" on state 4
 - 0 otherwise
- Termination
 - On "try goal" (any state)
 - After fixed time limit

State	1	2	3	4	5	6	7	8
Reward (on try-goal)	0	0	0	1	0	0	0	0
				Y			<u>*</u> ,	

LLM as Next-State Model



LLM as Reward Model



(, 9)				Y			<u>*</u> ,	
Reward (on try-goal)	0	0	0	1	0	0	0	0
State	1	2	3	4	5	6	7	8

LLM as Policy

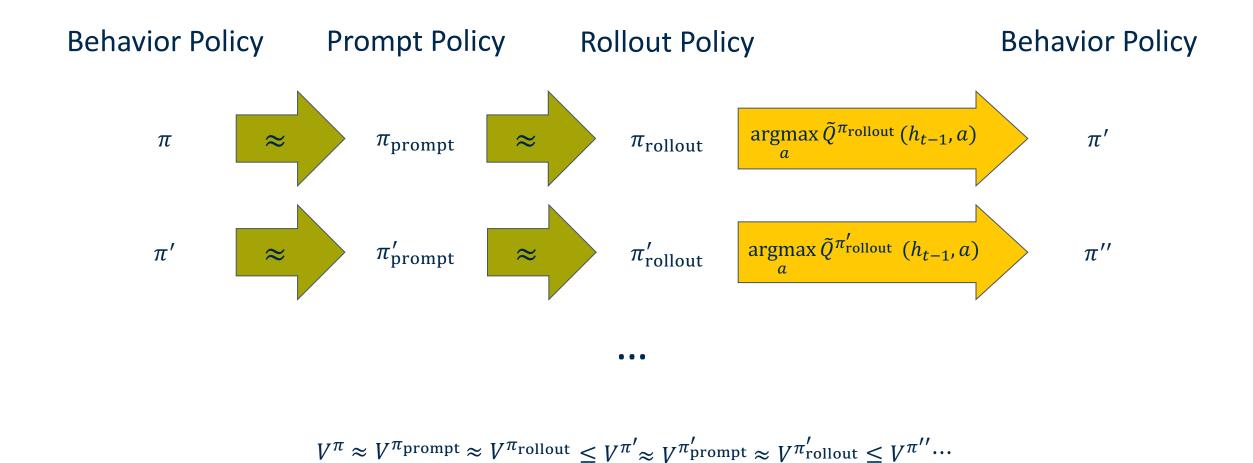
	state == 2 right reward == 0	Policy moves right when state < 4
Trajectories sampled from recent episodes	state == 5 left reward == 0 state == 4 try goal reward == 1	Policy moves left when state > 4
	state == 1	LLM generalizes

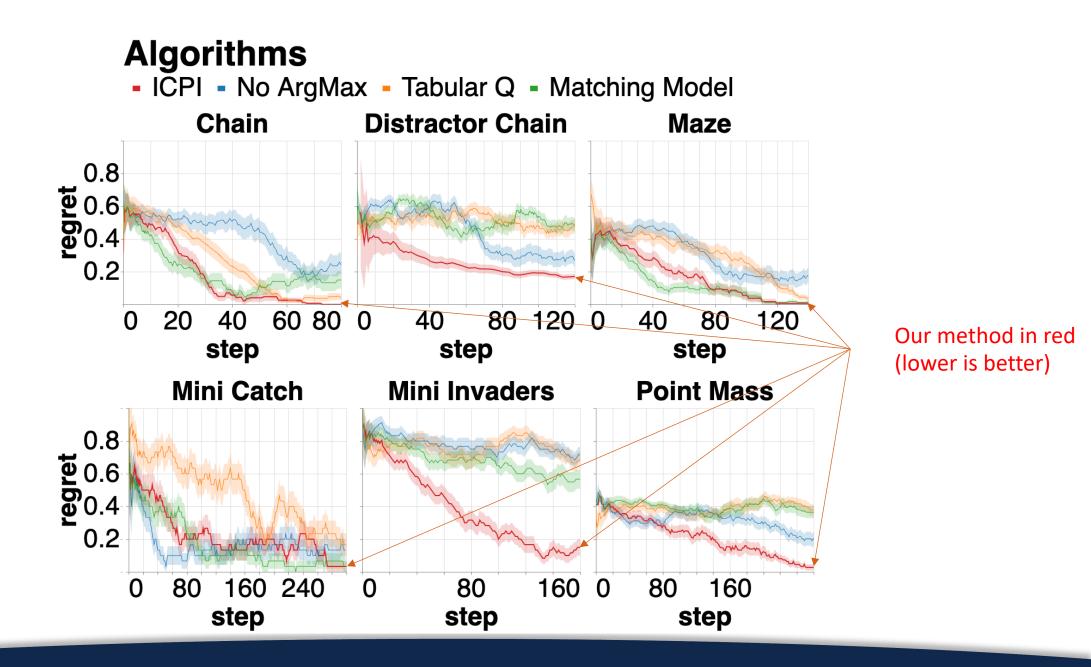
to suffix state

right

State	1	2	3	4	5	6	7	8
Reward (on try-goal)	0	0	0	1	0	0	0	0
				Y			*	

Policy Improvement





Why RL + LLMs is a happy marriage

- RL can leverage knowledge distilled in LLMs to learn rapidly.
- LLMs can use RL to improve without further (gradientbased) training.