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Main Question: Why do overparameterized neural networks generalize?
- Even when trained to fit noisy samples, even without regularization…

• Seems to defy classical learning theory, “Occam’s razor”…
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Setting

• Noisy “classification” data: 𝑆 = 𝑥! , 𝑦! !"#
$ ⊂ ℝ%× ±1

- Ground truth 𝑓∗ 𝑥! ≡ 1, each 𝑦!  flipped w.p. 𝑝 ∈ 0, !"

• Two-layer ReLU neural network 𝑁' 𝑥 ≔ ∑("#) 𝑎( ⋅ 𝑤( ⋅ 𝑥 + 𝑏( *

• Network interpolates dataset: 𝑦!𝑁' 𝑥! > 0, ∀𝑖 ∈ 𝑚 + +
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• Analyze the clean test error 𝐿 𝑁' ≔ Pr
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Types of overfitting (following Mallinar et al. ’22)

• Analyze the clean test error 𝐿 𝑁' ≔ Pr
+
𝑁' 𝑥 ≤ 0

- The overfitting is called “benign” if 𝐿 𝑁! → 0 [Bartlett et al. ’20]

- The overfitting is called “tempered” if 𝐿 𝑁! ∈ 0, !"
☆  Special case of ineterest is when 𝐿 𝑁!  scales with 𝑝, e.g. 𝐿 𝑁! ≈ 𝑝

- The overfitting is called “catastrophic” if 𝐿 𝑁! → "
#
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Main technical tool: Implicit bias

Gradient based training with certain losses (e.g. logistic) drives 𝜃 
towards a KKT point of the margin maximization problem

min 𝜃 0 𝑠. 𝑡 𝑦!𝑁' 𝑥! ≥ 1 ∀𝑖 ∈ 𝑚

[Lyu & Li ‘20, Ji & Telgarsky ‘20]
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Theorem: In dimension 𝑑 = 1, with noise level 𝑝, w.h.p. over the sample 
any KKT point 𝜃 satisfies 𝐿 𝑁' ∈ 𝑝1, 𝑝 .

Moreover, any local minimum of max margin 𝜃 satisfies 𝐿 𝑁' ≈ 𝑝 .
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Theorem: In dimension 𝑑 = 1, with noise level 𝑝, w.h.p. over the sample 
any KKT point 𝜃 satisfies 𝐿 𝑁' ∈ 𝑝1, 𝑝 .

Moreover, any local minimum of max margin 𝜃 satisfies 𝐿 𝑁' ≈ 𝑝 .

Theorem: In dimension 𝑑 ≳ poly 𝑚 log 1/𝜖 , under some 
assumptions*, w.h.p. over the sample, KKT points 𝜃 satisfy 𝐿 𝑁' ≤ 𝜖 .

Equivalently, 𝐿 𝑁' ≲ exp −𝑑 .

More results and details in paper… *We give different sets of assumption, probably not minimal
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Thanks!


