NeurIPS 2023

Prompt-augmented Temporal Point Process for Streaming Event Sequence

Siqiao Xue^{*}, Yan Wang^{*}, Zhixuan Chu, Xiaoming Shi , Caigao Jiang, Hongyan Hao, Gangwei Jiang, Xiaoyun Feng, James Y Zhang, Jun Zhou

Ant Group

2023.10

Our Problem

Event data typically comes in *streams*, how to learn event streams continuously?

Our Key Idea: Using Prompt Pool to Instruct the Learning

Our Model: Prompt-augmented Temporal Point Process

$$\boldsymbol{P} = [\boldsymbol{P}_1, ..., \boldsymbol{P}_M] \ \boldsymbol{P}_i \in \mathbb{R}^{L_p \times D}$$

μ.

sequence.

From Prompt to Prompt Pool

$$ext{K}_{top-N} = rgmin_{\{r_j\}_{j=1}^N} \sum_{i=1}^N arphi(oldsymbol{h}_i,oldsymbol{k}_{r_j}) \; ,$$

Retrieval Mechanism

Prompt-Event Interaction combines retrieval prompts with the encoded event

Model Training: Joint Optimization with Prompts and TPP

$$\min_{\boldsymbol{P},\phi_{enc},\phi_{dec},\mathcal{K}} \mathcal{L}_{nll}(\boldsymbol{P}, f_{\phi_{enc}}, f_{\phi_{dec}}) + \alpha \sum_{i} \sum_{\mathrm{K}_{top-N}} \varphi(f_{\phi_{enc}}(e_i @ t_i), \boldsymbol{k}_{r_j}),$$

Negative loglikelihood of event sequence

a surrogate loss to pull selected keys closer to corresponding query in the retrieval process

Model Inference: Thinning Sampling with retrieved prompts

Algorithm 2 PromptTPP at test time of the \mathcal{T} -th task.

Input: An event sequence $s_{[0,T]} = \{e_i @t_i\}_{i=1}^I$. Trained base model with a encoder $f_{\phi_{enc}}$ and a decoder $f_{\phi_{dec}}$; trained CtRetroPromptPool $(\mathcal{K}, \mathcal{V}) = \{(\mathbf{k}_i, \mathbf{P}_i)\}_{i=1}^M$ and the score function φ . **Output:** Sampled next event $\hat{e}_{I+1} \otimes \hat{t}_{I+1}$. 1: **procedure** DRAWNEXTEVENT($s_{[0,T]}, f_{\phi_{enc}}, f_{\phi_{dec}}$) 2: $t_0 \leftarrow T; \mathcal{H} \leftarrow s_{[0,T]}$ 3: > Compute sampling intensity 4: $\{\lambda_e(t_j \mid \mathcal{H})\}_{i=1}^N \leftarrow \text{SAMPLEINTENSITY}(s_{[0,T]}, f_{\phi_{enc}}, f_{\phi_{dec}}, \{(k_i, P_i)\}_{i=1}^M) \text{ for all } t_j \in \mathcal{H}\}$ (t_0,∞) \triangleright Compute the upper bound λ^* . 5: ▷ Technical details can be found in Mei & Eisner (2017) 6: Take retro prompts as find upper bound $\lambda^* \geq \sum_{e=1}^E \lambda_e(t_i \mid \mathcal{H})$ for all $t_i \in (t_0, \infty)$ 7: input into the 8: repeat calculation of the draw $\Delta \sim \operatorname{Exp}(\lambda^*); t_0 \mathrel{+}= \Delta$ \triangleright time of next proposed event \hat{t}_{I+1} 9: intensities $u \sim \text{Unif}(0, 1)$ 10: until $u\lambda^* \leq \sum_{e=1}^E \lambda_e(t_0 \mid \mathcal{H})$ 11: draw $\widehat{e}_{I+1} \in \{1, \dots, E\}$ where probability of e is $\propto \lambda_e(t_0 \mid \mathcal{H})$ 12: return $\hat{e}_{I+1} @ t_{I+1}$ 13: 14: procedure SAMPLEINTENSITY $(s_{[0,T]}, f_{\phi_{enc}}, f_{\phi_{dec}}, \{(k_i, P_i)\}_{i=1}^M)$ 15: Assume the last event in $s_{[0,T]}$ is e@tGenerate a list of sample times $\{t_i\}_{i=1}^N, t_i \ge T$. 16: Compute the intensity at sample times 17: $\lambda_e t_i$ CALCINTEN- \leftarrow SITY $(s_{[0,t]}, e@t, f_{\phi_{enc}}, f_{\phi_{dec}}, \{(k_i, P_i)\}_{i=1}^M)$ 18: return $\{\lambda_e(t_j \mid \mathcal{H})\}_{i=1}^N$

Please come to our **poster** for

Model details !

Training details !

Work well? Very well!

Please download our paper at

