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ü Enhance generalizability

ü Accelerate decision-making

ü Study underrepresented 

populations, rare diseases, 

and exposures
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Under multiple real-world constraints: 
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Density Ratio Weighting

Existing methods 
adjust for heterogeneity in 
covariate distributions (covariate 
shift) across 
sites by the inverse probability 
of selection weighting (IPSW)

But
IPSW requires pooling target 
and source samples, which is 
often not possible due to 
data privacy regulations. 

for adjusting covariate shift across sites 



Density Ratio Weighting

Existing methods 
adjust for heterogeneity in 
covariate distributions (covariate 
shift) across 
sites by the inverse probability 
of selection weighting (IPSW)

But
IPSW requires pooling target 
and source samples, which is 
often not possible due to 
data privacy regulations. 

We
consider a density ratio weighting approach, which offers 
equivalent estimation without the need for direct data pooling.

for adjusting covariate shift across sites 
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Multiply Robust Estimation

Existing methods 
require common models to 
be specified across sites.

But
it is beneficial for investigators 
at different sites to incorporate 
site-specific knowledge when 
specifying candidate models. 

We
We relax this requirement by adopting a multiply robust 
estimator, allowing investigators in each site to propose 
multiple, different outcome and treatment models. 

for multiple, different models across sites 
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Existing methods 
assume a common set of 
observed covariates.

But
assumption rarely met due to 
variations in local practices, 
e.g., differing data collection 
standards and coding practices.

adjusted by a new nuisance function 𝝉𝒂,𝒌 



Covariate Mismatch

Existing methods 
assume a common set of 
observed covariates.

But
assumption rarely met due to 
variations in local practices, 
e.g., differing data collection 
standards and coding practices.

We
We introduce a new nuisance function 𝝉𝒂,𝒌 which projects all 
site-specific estimates of conditional outcomes to a common 
hyperplane defined by shared effect modifiers across sites. 

adjusted by a new nuisance function 𝝉𝒂,𝒌 
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Federated Estimation

Existing methods  
• Target only 
• Sample size weighting (SS) 
• Inverse variance weighting (IVW) 
• …

But
preventing negative transfer is 
critical when there are multiple, 
potentially biased source sites.

by an adaptive ensemble method   



Federated Estimation

Existing methods  
• Target only 
• Sample size weighting (SS) 
• Inverse variance weighting (IVW) 
• …

But
preventing negative transfer is 
critical when there are multiple, 
potentially biased source sites.

We
We combine all site-specific estimates by an adaptive 
ensemble method; control for bias due to non-transportable 
site estimates while achieving optimal efficiency.

by an adaptive ensemble method   



Treatment effect of percutaneous coronary intervention (PCI) on 
length of hospital stay for acute myocardial infarction (AMI) patients 
v Target state: Maine 
v Source states: 48 other continental states 
v Coarsened covariates: Demographics
v Additional covariates: Comorbidities 



    Target    −7.63 (−11.45  −3.81)
        SS    −9.93 (−15.29  −4.56)

       IVW    −8.94 ( −9.47  −8.41)
   AIPW−L1    −7.84 ( −9.60  −6.09)

     MR−L1    −7.49 ( −9.82  −5.16)
−16 −14 −12 −10 −8 −6 −4 −2 0

 Estimator    Est.           (CI)

Treatment effect of percutaneous coronary intervention (PCI) on 
length of hospital stay for acute myocardial infarction (AMI) patients 
v Target state: Maine 
v Source states: 48 other continental states 
v Coarsened covariates: Demographics
v Additional covariates: Comorbidities 

Figure: Estimates of PCI treatment effect in Maine with covariate mismatch in patient comorbidities 



Figure: Federation weights across states for the PCI treatment effect in Maine with four federated estimators
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